Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

A single episode of high intensity sound inhibits long-term potentiation in the hippocampus of rats (2017)

  • Authors:
  • USP affiliated authors: MORAES, LEONARDO RESSTEL BARBOSA - FMRP ; ELIAS, LUCILA LEICO KAGOHARA - FMRP ; RODRIGUES, JOSE ANTUNES - FMRP ; ALMEIDA, SEBASTIÃO DE SOUSA - FFCLRP ; LEÃO, RICARDO MAURICIO XAVIER - FMRP
  • USP Schools: FMRP; FMRP; FMRP; FFCLRP; FMRP
  • DOI: 10.1038/s41598-017-14624-1
  • Subjects: SOM; HIPOCAMPU DE ANIMAL; EXPOSIÇÃO AMBIENTAL; PLASTICIDADE NEURONAL
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1038/s41598-017-14624-1 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: bronze
    • Licença: cc-by

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      DEUS, J. L. de; CUNHA, A. O. S.; TERZIAN, A. L.; et al. A single episode of high intensity sound inhibits long-term potentiation in the hippocampus of rats. Scientific Reports, London, v. 7, n. 1, 2017. Disponível em: < http://dx.doi.org/10.1038/s41598-017-14624-1 > DOI: 10.1038/s41598-017-14624-1.
    • APA

      Deus, J. L. de, Cunha, A. O. S., Terzian, A. L., Resstel, L. B. M., Elias, L. L. K., Antunes-Rodrigues, J., et al. (2017). A single episode of high intensity sound inhibits long-term potentiation in the hippocampus of rats. Scientific Reports, 7( 1). doi:10.1038/s41598-017-14624-1
    • NLM

      Deus JL de, Cunha AOS, Terzian AL, Resstel LBM, Elias LLK, Antunes-Rodrigues J, Almeida S de S, Leão RMX. A single episode of high intensity sound inhibits long-term potentiation in the hippocampus of rats [Internet]. Scientific Reports. 2017 ; 7( 1):Available from: http://dx.doi.org/10.1038/s41598-017-14624-1
    • Vancouver

      Deus JL de, Cunha AOS, Terzian AL, Resstel LBM, Elias LLK, Antunes-Rodrigues J, Almeida S de S, Leão RMX. A single episode of high intensity sound inhibits long-term potentiation in the hippocampus of rats [Internet]. Scientific Reports. 2017 ; 7( 1):Available from: http://dx.doi.org/10.1038/s41598-017-14624-1

    Referências citadas na obra
    Zocoli, A. M., Morata, T. C., Marques, J. M. & Corteletti, L. J. Brazilian young adults and noise: attitudes, habits, and audiological characteristics. Int. J. Audiol. 48, 692–9 (2009).
    Coelho, C. B., Sanchez, T. G. & Tyler, R. S. Hyperacusis, sound annoyance, and loudness hypersensitivity in children. Prog Brain Res. 166, 169–78 (2007a).
    Shargorodsky, J., Curhan, G. C. & Farwell, W. R. Prevalence and characteristics of tinnitus among US adults. Am J Med. 123, 711–8 (2010).
    Bhatt, J. M., Lin, H. W. & Bhattacharyya, N. Prevalence, Severity, Exposures, and Treatment Patterns of Tinnitus in the United States. JAMA Otolaryngol Head Neck Surg. 21 (2016).
    Ising, H. & Kruppa, B. Health effects caused by noise: Evidence in the literature from the past 25 years. Noise Health. 6, 5–13 (2004).
    Basner, M. et al. Auditory and non-auditory effects of noise on health. Lancet. 383, 1325–32 (2014).
    Skogstad, M. et al. Systematic review of the cardiovascular effects of occupational noise. Occup Med (Lond). 66, 10–6 (2016).
    Stansfeld, S. A. et al. RANCH study team. Aircraft and road traffic noise and children’s cognition and health: a cross-national study. Lancet. 365, 1942–9 (2005).
    Lercher, P., Evans, G. W. & Meis, M. Ambient noise and cognitive processes among primary schoolchildren. Environment and Behavior. 35, 725–735 (2003).
    Helfer, T. M. et al. Noise-induced hearing injury and comorbidities among post deployment USArmy soldiers: April 2003-June 2009. Am J Audiol. 20, 33–41 (2011).
    Rubovitch, V. et al. A mouse model of blast-induced mild traumatic brain injury. Exp Neurol. 232, 280–9 (2011).
    Beamer, M. et al. Primary blast injury causes cognitive impairments and hippocampal circuit alterations. Exp Neurol. 283, 16–28 (2016).
    Mayford, M., Siegelbaum, S. A. & Kandel, E. R. Synapses and Memory Storage. Cold Spring Harb Perspect Biol. 4, a005751 (2012).
    Volianskis, A. et al. Long-term potentiation and the role of N-methyl-D-aspartate receptors. Brain Res. 5-16, 2015 (1621).
    Kraus, K. S. & Canlon, B. Neuronal connectivity and interactions between the auditory and limbic systems. Effects of noise and tinnitus. Hear Res. 288, 34–46 (2012).
    Squire, L. R., Schmolck, H. & Stark, S. M. Impaired auditory recognition memory in amnesic patients with medial temporal lobe lesions. Learn Mem. 8, 252–6 (2001).
    Tamura, R., Ono, T., Fukuda, M. & Nakamura, K. Recognition of egocentric and allocentric visual and auditory space by neurons in the hippocampus of monkeys. Neurosci. Lett. 109, 293–298 (1990).
    Aronov, D., Nevers, R. & Tank, D. W. Mapping of a non-spatial dimension by the hippocampal-entorhinal circuit. Nature. 543, 719–722 (2017).
    Cheng, L., Wang, S. H., Chen, Q. C. & Liao, X. M. Moderate noise induced cognition impairment of mice and its underlying mechanisms. Physiol Behav. 104, 981–8 (2011).
    Cheng, L., Wang, S. H., Huang, Y. & Liao, X. M. The hippocampus may be more susceptible to environmental noise than the auditory cortex. Hear Res. 333, 93–7 (2016).
    Goble, T. J., Møller, A. R. & Thompson, L. T. Acute high-intensity sound exposure alters responses of place cells in hippocampus. Hear Res. 253, 52–9 (2009).
    Angelucci, F. et al. Investigating the neurobiology of music: brain-derived neurotrophic factor modulation in the hippocampus of young adult mice. Behav Pharmacol. 18, 491–6 (2007).
    Lu, Y., Christian, K. & Lu, B. BDNF: A key regulator for protein synthesis-dependent LTP and long-term memory? Neurobiol Learn Mem. 89, 312–323 (2008).
    Drago, F. et al. Behavioral and neurochemical alterations induced by reversible conductive hearing loss in aged male rats. Neurosci Lett. 205, 1–4 (1996).
    Liu, L. et al. Noise induced hearing loss impairs spatial learning/memory and hippocampal neurogenesis in mice. Sci Rep. 6, 20374 (2016).
    Kim, H. et al. Influence of prenatal noise and music on the spatial memory and neurogenesis in the hippocampus of developing rats. Brain Dev. 28, 109–14 (2006).
    Barzegar, M., Sajjadi, F. S., Talaei, S. A., Hamidi, G. & Salami, M. Prenatal exposure to noise stress: anxiety, impaired spatial memory, and deteriorated hippocampal plasticity in postnatal life. Hippocampus. 25, 187–96 (2015).
    Campeau, S., Akil, H. & Watson, S. J. Lesions of the medial geniculate nuclei specifically block corticosterone release and induction of c-fos mRNA in the forebrain associated with audiogenic stress in rats. J Neurosci. 17, 5979–92 (1997).
    Helfferich, F. & Palkovits, M. Acute audiogenic stress-induced activation of CRH neurons in the hypothalamic paraventricular nucleus and catecholaminergic neurons in the medulla oblongata. Brain Res. 975, 1–9 (2003).
    Burow, A., Day, H. & Campeau, S. A detailed characterization of loud noise stress: Intensity analysis of hypothalamo–pituitary–adrenocortical axis and brain activation. Brain Research. 1062, 63–73 (2005).
    Shors, T. J., Levine, S. & Thompson, R. F. Effect of adrenalectomy and demedullation on the stress-induced impairment of long-term potentiation. Neuroendocrinology. 51, 70–5 (1990).
    Maggio, N. & Segal, M. Striking variations in corticosteroid modulation of long-term potentiation along the septotemporal axis of the hippocampus. J Neurosci. 27, 5757–65 (2007).
    Cunha, A. O. S., Oliveira, J. A. C., Garcia-Cairasco, N. & Leão, R. M. Inhibition of long-term potentiation in the schaffer-CA1 pathway by repetitive high intensity sound stimulation. Neuroscience. 310, 114–127 (2015).
    Lüscher, C. & Malenka, R. NMDA. Receptor-Dependent Long-Term Potentiation and Long-Term Depression (LTP/LTD). Cold Spring Harb Perspectives Biology 4, a005710 (2012).
    Habets, R. L. & Borst, J. G. Post-tetanic potentiation in the rat calyx of Held synapse. J Physiol 564, 173–187 (2005).
    Habets, R. L. & Borst, J. G. Dynamics of the readily releasable pool during post-tetanic potentiation in the rat calyx of Held synapse. J Physiol. 581, 467–78 (2007).
    Korogod, N., Lou, X. & Schneggenburger, R. Posttetanic potentiation critically depends on an enhanced Ca2+ sensitivity of vesicle fusion mediated by presynaptic PKC. Proc Natl Acad Sci 104, 15923–15928 (2007).
    Lee, J. S., Kim, M. H., Ho, W. K. & Lee, S. H. Presynaptic release probability and readily releasable pool size are regulated by two independent mechanisms during posttetanic potentiation at the calyx of Held synapse. J Neurosci. 28, 7945–53 (2008).
    Xue, L. & Wu, L. G. Post-tetanic potentiation is caused by two signalling mechanisms affecting quantal size and quantal content. J Physiol. 588, 4987–4994 (2010).
    Regehr, W. Short-Term Presynaptic Plasticity. Cold Spring Harbor Perspectives in Biology 4, a005702 (2012).
    Tsien, J. Z., Huerta, P. T. & Tonegawa, S. The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell. 87, 1327–38 (1996).
    Tang, Y. P. et al. Genetic enhancement of learning and memory in mice. Nature. 401, 63–9 (1999).
    Vorhees, C. V. & Williams, M. T. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc. 1, 848–58 (2006).
    Maren, S. & Fanselow, M. S. Synaptic plasticity in the basolateral amygdala induced by hippocampal formation stimulation in vivo. J Neurosci. 15, 7548–7564 (1995).
    Kraus, K. S. et al. Noise trauma impairs neurogenesis in the rat hippocampus. Neuroscience. 167, 1216–26 (2010).
    von Engelhardt, J. et al. Contribution of hippocampal and extra-hippocampal NR2B-containing NMDA receptors to performance on spatial learning tasks. Neuron. 60, 846–60 (2008).
    Bannerman, D. M. et al. Dissecting spatial knowledge from spatial choice by hippocampal NMDA receptor deletion. Nat Neurosci. 15, 1153–9 (2012).
    Manikandan, S. et al. Effects of chronic noise stress on spatial memory of rats in relation to neuronal dendritic alteration. Neurosci Lett. 399, 17–22 (2006).
    Whitlock, J. R., Heynen, A. J., Shuler, M. G. & Bear, M. F. Learning induces long-term potentiation in the hippocampus. Science. 313, 1093–1097 (2006).
    Gruart, A., Muñoz, M. D. & Delgado-García, J. M. Involvement of the CA3-CA1 synapse in the acquisition of associative learning in behaving mice. J Neurosci. 26, 1077–1087 (2006).
    Maren, S., Phan, K. L. & Liberzon, I. The contextual brain: implications for fear conditioning, extinction and psychopathology. Nat Rev Neurosci. 14, 417–428 (2013).
    Izquierdo, I., Furini, C. R. & Myskiw, J. C. Fear Memory. Physiol Rev. 96, 695–750 (2016).
    Fiorenza, N. G., Rosa, J., Izquierdo, I. & Myskiw, J. C. Modulation of the extinction of two different fear-motivated tasks in three distinct brain areas. Behav Brain Res. 232, 210–216 (2012).
    Orsini, C. A. & Maren, S. Neural and cellular mechanisms of fear and extinction memory formation. Neurosci Biobehav Rev. 36, 1773–1802 (2012).
    Abraham, W. C. & Bear, M. F. Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci. 19, 126–130 (1996).
    Doretto, M. C. et al. Quantitative study of the response to genetic selection of the Wistar audiogenic rat strain (WAR). Behav Genet. 33, 33–42 (2003).
    Romcy-Pereira, R. N. & Garcia-Cairasco, N. Hippocampal cell proliferation and epileptogenesis after audiogenic kindling are not accompanied by mossy fiber sprouting or Fluoro-Jade staining. Neuroscience. 119, 533–46 (2003).
    Haack, D., Vecsei, P., Lichtwald, K. & Vielhauer, W. Corticosteroid and corticosteroid metabolite levels in animals immunized against corticosteroids. J. Steroid Biochem. 11, 971–980 (1979).
    Coletti, R., Almeida-Pereira, G., Elias, L. L. & Antunes-Rodrigues, J. Effects of hydrogen sulfide (H2S) on water intake and vasopressin and oxytocin secretion induced by fluid deprivation. Horm Behav. 67, 12–20 (2015).
    Milad, M. R. & Quirk, G. J. Fear extinction as a model for translational neuroscience: ten years of progress. Annu. Rev. Psychol. 63, 129–151 (2012).