Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Leukotriene B4 is essential for lung host defence and alpha-defensin-1 production during Achromobacter xylosoxidans infection (2017)

  • Authors:
  • USP affiliated authors: SILVA, FRANCISCO WANDERLEY GARCIA DE PAULA E - FORP ; FONTANARI, CAROLINE - FCFRP ; FERREIRA, JOSEANE CRISTINA - FCFRP ; RAMOS, SIMONE GUSMÃO - FMRP ; SORGI, CARLOS ARTERIO - FCFRP ; DARINI, ANA LUCIA DA COSTA - FCFRP ; FACCIOLI, LUCIA HELENA - FCFRP
  • USP Schools: FORP; FCFRP; FCFRP; FMRP; FCFRP; FCFRP; FCFRP
  • DOI: 10.1038/s41598-017-17993-9
  • Subjects: LEUCOTRIENOS B; PSEUDOMONAS; INFECÇÕES BACTERIANAS GRAM-NEGATIVAS
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1038/s41598-017-17993-9 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: bronze
    • Licença: cc-by

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      PRADO, Morgana K. B.; LOCACHEVIC, Gisele A.; ZOCCAL, Karina F.; et al. Leukotriene B4 is essential for lung host defence and alpha-defensin-1 production during Achromobacter xylosoxidans infection. Scientific Reports, London, v. 7, n. 1, 2017. Disponível em: < http://dx.doi.org/10.1038/s41598-017-17993-9 > DOI: 10.1038/s41598-017-17993-9.
    • APA

      Prado, M. K. B., Locachevic, G. A., Zoccal, K. F., Paula-Silva, F. W. G. de, Fontanari, C., Ferreira, J. C., et al. (2017). Leukotriene B4 is essential for lung host defence and alpha-defensin-1 production during Achromobacter xylosoxidans infection. Scientific Reports, 7( 1). doi:10.1038/s41598-017-17993-9
    • NLM

      Prado MKB, Locachevic GA, Zoccal KF, Paula-Silva FWG de, Fontanari C, Ferreira JC, Pereira PAT, Gardinassi LG, Ramos SG, Sorgi CA, Darini AL da C, Faccioli LH. Leukotriene B4 is essential for lung host defence and alpha-defensin-1 production during Achromobacter xylosoxidans infection [Internet]. Scientific Reports. 2017 ; 7( 1):Available from: http://dx.doi.org/10.1038/s41598-017-17993-9
    • Vancouver

      Prado MKB, Locachevic GA, Zoccal KF, Paula-Silva FWG de, Fontanari C, Ferreira JC, Pereira PAT, Gardinassi LG, Ramos SG, Sorgi CA, Darini AL da C, Faccioli LH. Leukotriene B4 is essential for lung host defence and alpha-defensin-1 production during Achromobacter xylosoxidans infection [Internet]. Scientific Reports. 2017 ; 7( 1):Available from: http://dx.doi.org/10.1038/s41598-017-17993-9

    Referências citadas na obra
    Cohen, T. S. & Prince, A. Cystic fibrosis: a mucosal immunodeficiency syndrome. Nat. Med. 18, 509–519 (2012).
    Tummler, B. & Kiewitz, C. Cystic fibrosis: an inherited susceptibility to bacterial respiratory infections. Mol. Med. Today. 5, 351–358 (1999).
    Green, H. & Jones, A. M. The microbiome and emerging pathogens in cystic fibrosis and non-cystic fibrosis bronchiectasis. Semin. Respir. Crit. Care Med. 36, 225–235 (2015).
    Ronne Hansen, C., Pressler, T., Hoiby, N. & Gormsen, M. Chronic infection with Achromobacter xylosoxidans in cystic fibrosis patients; a retrospective case control study. J. Cyst. Fibros. 5, 245–251 (2006).
    Swenson, C. E. & Sadikot, R. T. Achromobacter respiratory infections. Ann. Am. Thorac. Soc. 12, 252–258 (2015).
    Carpagnano, G. E., Barnes, P. J., Geddes, D. M., Hodson, M. E. & Kharitonov, S. A. Increased leukotriene B4 and interleukin-6 in exhaled breath condensate in cystic fibrosis. Am. J. Respir. Crit. Care Med. 167, 1109–1112 (2003).
    Hansen, C. R. et al. Inflammation in Achromobacter xylosoxidans infected cystic fibrosis patients. J. Cyst. Fibros. 9, 51–58 (2010).
    Jabr, S. et al. Quantification of major urinary metabolites of PGE2 and PGD2 in cystic fibrosis: correlation with disease severity. Prostaglandins Leukot. Essent. Fatty Acids. 89, 121–126 (2013).
    Mantovani, R. P., Levy, C. E. & Yano, T. A heat-stable cytotoxic factor produced by Achromobacter xylosoxidans isolated from Brazilian patients with CF is associated with in vitro increased proinflammatory cytokines. J. Cyst. Fibros. 11, 305–311 (2012).
    Kawai, Y. et al. A typical bacterial ornithine-containing lipid Nalpha-(D)-[3-(hexadecanoyloxy)hexadecanoyl]-ornithine is a strong stimulant for macrophages and a useful adjuvant. FEMS Immunol. Med. Microbiol. 23, 67–73 (1999).
    Hutchison, M. L., Bonell, E. C., Poxton, I. R. & Govan, J. R. Endotoxic activity of lipopolysaccharides isolated from emergent potential cystic fibrosis pathogens. FEMS Immunol. Med. Microbiol. 27, 73–77 (2000).
    Dennis, E. A. & Norris, P. C. Eicosanoid storm in infection and inflammation. Nat. Rev. Immunol. 15, 511–523 (2015).
    Bailie, M. B. et al. Leukotriene-deficient mice manifest enhanced lethality from Klebsiella pneumonia in association with decreased alveolar macrophage phagocytic and bactericidal activities. J. Immunol. 157, 5221–5224 (1996).
    Peres, C. M. et al. Inhibition of leukotriene biosynthesis abrogates the host control of Mycobacterium tuberculosis. Microbes Infect. 9, 483–489 (2007).
    Soares, E. M. et al. Leukotriene B4 enhances innate immune defense against the puerperal sepsis agent Streptococcus pyogenes. J. Immunol. 190, 1614–1622 (2013).
    Medeiros, A. I., Silva, C. L., Malheiro, A., Maffei, C. M. & Faccioli, L. H. Leukotrienes are involved in leukocyte recruitment induced by live Histoplasma capsulatum or by the beta-glucan present in their cell wall. Br. J. Pharmacol. 128, 1529–1537 (1999).
    Secatto, A. et al. 5-Lipoxygenase deficiency impairs innate and adaptive immune responses during fungal infection. PLoS One 7, e31701 (2012).
    Flamand, L., Tremblay, M. J. & Borgeat, P. Leukotriene B4 triggers the in vitro and in vivo release of potent antimicrobial agents. J. Immunol. 178, 8036–8045 (2007).
    Zoccal, K. F. et al. Opposing roles of LTB4 and PGE2 in regulating the inflammasome-dependent scorpion venom-induced mortality. Nat. Commun. 7, 10760 (2016).
    Welkos, S. & O’Brien, A. Determination of median lethal and infectious doses in animal model systems. Methods Enzymol. 235, 29–39 (1994).
    Weil, C. S. Tables for convenient calculation of Median-Effective Dose (LD50 or ED50) and Instructions for their use. Biometrics. 8, 395–401 (1952).
    Medzhitov, R. Origin and physiological roles of inflammation. Nature. 454, 428–435 (2008).
    Parker, J. C. & Townsley, M. I. Evaluation of lung injury in rats and mice. Am. J. Physiol. Lung Cell Mol. Physiol. 286, L231–246 (2004).
    Widegren, H. et al. LTB4 increases nasal neutrophil activity and conditions neutrophils to exert antiviral effects. Respir. Med. 105, 997–1006 (2011).
    Medeiros, A. I. et al. Blockade of endogenous leukotrienes exacerbates pulmonary histoplasmosis. Infect. Immun. 72, 1637–1644 (2004).
    Serezani, C. H., Aronoff, D. M., Jancar, S., Mancuso, P. & Peters-Golden, M. Leukotrienes enhance the bactericidal activity of alveolar macrophages against Klebsiella pneumoniae through the activation of NADPH oxidase. Blood. 106, 1067–1075 (2005).
    Machado, E. R. et al. Leukotrienes play a role in the control of parasite burden in murine strongyloidiasis. J. Immunol. 175, 3892–3899 (2005).
    Nicolete, R., Secatto, A., Pereira, P. A., Soares, E. G. & Faccioli, L. H. Leukotriene B4-loaded microspheres as a new approach to enhance antimicrobial responses in Histoplasma capsulatum-infected mice. Int. J. Antimicrob. Agents. 34, 365–369 (2009).
    Peres-Buzalaf, C. et al. Control of experimental pulmonary tuberculosis depends more on immunostimulatory leukotrienes than on the absence of immunosuppressive prostaglandins. Prostaglandins Leukot. Essent. Fatty Acids. 85, 75–81 (2011).
    Pedruzzi, G., Das, P. N., Rao, K. V. & Chatterjee, S. Understanding PGE2, LXA4 and LTB4 balance during Mycobacterium tuberculosis infection through mathematical model. J. Theor. Biol. 389, 159–170 (2016).
    Lee, S. P., Serezani, C. H., Medeiros, A. I., Ballinger, M. N. & Peters-Golden, M. Crosstalk between prostaglandin E2 and leukotriene B4 regulates phagocytosis in alveolar macrophages via combinatorial effects on cyclic AMP. J. Immunol. 182, 530–537 (2009).
    Pereira, P. A. et al. Celecoxib improves host defense through prostaglandin inhibition during Histoplasma capsulatum infection. Mediators Inflamm. 2013, 950981 (2013).
    Cabrera, G. et al. Leukotriene C4 increases the susceptibility of adult mice to Shiga toxin-producing Escherichia coli infection. Int. J. Med. Microbiol. 305, 910–917 (2015).
    Medeiros, A., Peres-Buzalaf, C., Fortino Verdan, F. & Serezani, C. H. Prostaglandin E2 and the suppression of phagocyte innate immune responses in different organs. Mediators Inflamm. 2012, 327568 (2012).
    Sorgi, C. A. et al. Dormant 5-lipoxygenase in inflammatory macrophages is triggered by exogenous arachidonic acid. Sci. Rep. 7, 10981 (2017).
    Marleau, S. et al. Role of 5-lipoxygenase products in the local accumulation of neutrophils in dermal inflammation in the rabbit. J. Immunol. 163, 3449–3458 (1999).
    Secatto, A. et al. The leukotriene B(4)/BLT(1) axis is a key determinant in susceptibility and resistance to histoplasmosis. PLoS One. 9, e85083 (2014).
    Mancuso, P. & Peters-Golden, M. Modulation of alveolar macrophage phagocytosis by leukotrienes is Fc receptor-mediated and protein kinase C-dependent. Am. J. Respir. Cell Mol. Biol. 23, 727–733 (2000).
    Peres, C. M. et al. Specific leukotriene receptors couple to distinct G proteins to effect stimulation of alveolar macrophage host defense functions. J. Immunol. 179, 5454–5461 (2007).
    Santos, P. C. et al. The pivotal role of 5-lipoxygenase-derived LTB4 in controlling pulmonary paracoccidioidomycosis. PLoS Negl. Trop. Dis. 7, e2390 (2013).
    Gaudreault, E. & Gosselin, J. Leukotriene B4 induces release of antimicrobial peptides in lungs of virally infected mice. J. Immunol. 180, 6211–6221 (2008).
    Ganz, T. et al. The structure of the rabbit macrophage defensin genes and their organ-specific expression. J. Immunol. 143, 1358–1365 (1989).
    Lehrer, R. I., Ladra, K. M. & Hake, R. B. Nonoxidative fungicidal mechanisms of mammalian granulocytes: demonstration of components with candidacidal activity in human, rabbit, and guinea pig leukocytes. Infect. Immun. 11, 1226–1234 (1975).
    Ganz, T. Defensins: antimicrobial peptides of innate immunity. Nat. Rev. Immunol. 3, 710–720 (2003).
    Ouellette, A. J. et al. Developmental regulation of cryptdin, a corticostatin/defensin precursor mRNA in mouse small intestinal crypt epithelium. J. Cell Biol. 108, 1687–1695 (1989).
    Lehrer, R. I. & Lu, W. alpha-Defensins in human innate immunity. Immunol. Rev. 245, 84–112 (2012).
    Smith, J. J., Travis, S. M., Greenberg, E. P. & Welsh, M. J. Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. Cell. 85, 229–236 (1996).
    Lemos, M. P., McKinney, J. & Rhee, K. Y. Dispensability of surfactant proteins A and D in immune control of Mycobacterium tuberculosis infection following aerosol challenge of mice. Infect. Immun. 79, 1077–1085 (2011).
    Assis, P. A. et al. Mycobacterium tuberculosis expressing phospholipase C subverts PGE2 synthesis and induces necrosis in alveolar macrophages. BMC Microbiol. 14, 128 (2014).
    Harder, J., Bartels, J., Christophers, E. & Schroder, J. M. Isolation and characterization of human beta -defensin-3, a novel human inducible peptide antibiotic. J. Biol. Chem. 276, 5707–5713 (2001).