Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Cooperative strategy for a dynamic ensemble of classification models in clinical applications: the case of MRI vertebral compression fractures (2017)

  • Authors:
  • USP affiliated authors: MARQUES, PAULO MAZZONCINI DE AZEVEDO - FMRP ; BARBOSA, MARCELLO HENRIQUE NOGUEIRA - FMRP
  • USP Schools: FMRP; FMRP
  • DOI: 10.1007/s11548-017-1625-2
  • Subjects: IMAGEM POR RESSONÂNCIA MAGNÉTICA; FRATURAS; COLUNA VERTEBRAL; REPRODUTIBILIDADE DE RESULTADOS; PROCESSAMENTO DE IMAGENS
  • Keywords: Cooperative classification; Dynamic ensemble; Vertebral compression fractures; Magnetic resonance imaging
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s11548-017-1625-2 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      CASTI, Paola; MENCATTINI, Arianna; NOGUEIRA-BARBOSA, Marcello Henrique; et al. Cooperative strategy for a dynamic ensemble of classification models in clinical applications: the case of MRI vertebral compression fractures. International Journal of Computer Assisted Radiology and Surgery, Heidelberg, v. 12, n. 11, p. 1971-1983, 2017. Disponível em: < http://dx.doi.org/10.1007/s11548-017-1625-2 > DOI: 10.1007/s11548-017-1625-2.
    • APA

      Casti, P., Mencattini, A., Nogueira-Barbosa, M. H., Pereira, L. F., Azevedo-Marques, P. M. de, Martinelli, E., & Di Natale, C. (2017). Cooperative strategy for a dynamic ensemble of classification models in clinical applications: the case of MRI vertebral compression fractures. International Journal of Computer Assisted Radiology and Surgery, 12( 11), 1971-1983. doi:10.1007/s11548-017-1625-2
    • NLM

      Casti P, Mencattini A, Nogueira-Barbosa MH, Pereira LF, Azevedo-Marques PM de, Martinelli E, Di Natale C. Cooperative strategy for a dynamic ensemble of classification models in clinical applications: the case of MRI vertebral compression fractures [Internet]. International Journal of Computer Assisted Radiology and Surgery. 2017 ; 12( 11): 1971-1983.Available from: http://dx.doi.org/10.1007/s11548-017-1625-2
    • Vancouver

      Casti P, Mencattini A, Nogueira-Barbosa MH, Pereira LF, Azevedo-Marques PM de, Martinelli E, Di Natale C. Cooperative strategy for a dynamic ensemble of classification models in clinical applications: the case of MRI vertebral compression fractures [Internet]. International Journal of Computer Assisted Radiology and Surgery. 2017 ; 12( 11): 1971-1983.Available from: http://dx.doi.org/10.1007/s11548-017-1625-2

    Referências citadas na obra
    Rokach L (2010) Pattern classification using ensemble methods, vol 75. World Scientific, Singapore
    Dastgheib ZA, Pouya OR, Lithgow B, Moussavi Z (2016) Comparison of a new ad-hoc classification method with support vector machine and ensemble classifiers for the diagnosis of Meniere’s disease using EVestG signals. In: 2016 IEEE Canadian conference on electrical and computer engineering (CCECE). IEEE, pp 1–4
    Da Silva LA, Hernandez EDM, Rangayyan RM (2008) ’Classification of breast masses using a committee machine of artificial neural networks. J Electron Imaging 17(1):013017
    Kuncheva LI (2012) Switching between selection and fusion in combining classifiers: an experiment. IEEE Trans Syst Man Cybern B 32(2):146–156
    Antunes S, Esposito A, Palmisano A, Colantoni C, Cerutti S, Rizzo G (2016) Cardiac multi-detector CT segmentation based on multiscale directional edge detector and 3D level set. Ann Biomed Eng 44(5):1487–1501
    Zhao Y, Rada L, Chen K, Harding SP, Zheng Y (2015) Automated vessel segmentation using infinite perimeter active contour model with hybrid region information with application to retinal images. IEEE Trans Med Imaging 34(9):1797–1807
    Siefert AW, Icenogle DA, Rabbah JPM, Saikrishnan N, Rossignac J, Lerakis S, Yoganathan AP (2013) Accuracy of a mitral valve segmentation method using J-splines for real-time 3D echocardiography data. Ann Biomed Eng 41(6):1258–1268
    Guliato D, Rangayyan RM, Carnielli WA, Desautels JL (2003) Fuzzy fusion operators to combine results of complementary medical image segmentation techniques. J Electron Imaging 12(3):379–389
    He R, Sajja BR, Datta S, Narayana PA (2008) Volume and shape in feature space on adaptive FCM in MRI segmentation. Ann Biomed Eng 36(9):1580–1593
    Melkemi KE, Batouche M, Foufou S (2006) A multiagent system approach for image segmentation using genetic algorithms and extremal optimization heuristics. Pattern Recognit Lett 27(11):1230–1238
    Benamrane N, Nassane S (2007) Medical image segmentation by a multi-agent system approach. In: Multiagent system technologies. Springer, Berlin, pp 49–60
    Bovenkamp EG, Dijkstra J, Bosch JG, Reiber JH (2009) User-agent cooperation in multiagent IVUS image segmentation. IEEE Trans Med Imaging 28(1):94–105
    Chen X, Udupa JK, Bagci U, Zhuge Y, Yao J (2012) Medical image segmentation by combining graph cuts and oriented active appearance models. IEEE Trans Image Process 21(4):2035–2046
    Lê M, Unkelbach J, Ayache N, Delingette H (2016) Sampling image segmentations for uncertainty quantification. Med Image Anal 34:42–51
    Warfield SK, Zou KH, Wells WM (2004) Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans Med Imaging 23(7):903–921
    Kohlberger T, Singh V, Alvino C, Bahlmann C, Grady L (2012) Evaluating segmentation error without ground truth. In: International conference on medical image computing and computer-assisted intervention. Springer, Berlin, pp 528–536
    Casti P, Mencattini A, Salmeri M, Ancona A, Mangeri F, Pepe ML, Rangayyan RM (2016) Contour-independent detection and classification of mammographic lesions. Biomed Signal Process Control 25:165–177
    Martinelli E, Magna G, Vergara A, Di Natale C (2014) Cooperative classifiers for reconfigurable sensor arrays. Sens Actuator B Chem 199:83–92
    Magna G, Casti P, Jayaraman SV, Salmeri M, Mencattini A, Martinelli E, Di Natale C (2016) Identification of mammography anomalies for breast cancer detection by an ensemble of classification models based on artificial immune system. Knowl Based Syst 101:60–70
    Brejl M, Sonka M (2000) Object localization and border detection criteria design in edge-based image segmentation: automated learning from examples. IEEE Trans Med Imaging 19(10):973–985
    Peng Z, Zhong J, Wee W, Lee JH (2006) Automated vertebra detection and segmentation from the whole spine MR images. In: Proceedings of IEEE EMBS, pp 2527–2530
    Huang SH, Chu YH, Lai SH, Novak CL (2009) Learning-based vertebra detection and iterative normalized-cut segmentation for spinal MRI. IEEE Trans Med Imaging 28(10):1595–1605
    Kelm BM, Wels M, Zhou SK, Seifert S, Suehling M, Zheng Y, Comaniciu D (2013) Spine detection in CT and MR using iterated marginal space learning. Med Image Anal 17(8):1283–1292
    Barbieri PD, Pedrosa GV, Traina AJM, Nogueira-Barbosa MH (2015) Vertebral body segmentation of spine MR images using superpixels. In: Proceedings of IEEE CBMS
    Frighetto-Pereira L, Rangayyan RM, Metzner GA, de Azevedo-Marques PM, Nogueira-Barbosa MH (2016) Shape, texture, and statistical features for classification of benign and malignant vertebral compression fractures in magnetic resonance images. Comput Biol Med 73(1):147–156
    Pizer S, Amburn E, Austin J, Cromartie AR, Geselowitz A, Greer T, Romeny BTH, Zimmerman JB, Zuiderveld K (1987) Adaptative histogram equalization and its varations. Comput Vis Graph Image Process 39:355–368
    Zhao Y, Liu Y, Wu X, Harding SP, Zheng Y (2015) Correction: retinal vessel segmentation: an efficient graph cut approach with retinex and local phase. PLoS ONE 10(4):e0127486
    Rosenfeld A, Kak A (1982) Digital picture processing, vol 2, 2nd edn. Academic Press, New York
    Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Proc 10(2):266–277
    Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66
    Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Plenum Press, New York
    Adams R, Bischof L (1994) Seeded region growing. IEEE Trans Pattern Anal Mach Intell 16(6):641–647
    Rangayyan RM (2005) Biomedical image analysis. CRC Press, Boca Raton
    Davies ER (2004) Machine vision: theory, algorithms, practicalities. Elsevier, Amsterdam
    Weinstein RS, Majumdar S (1994) Fractal geometry and vertebral compression fractures. J Bone Miner Res 9(1):1797–1802
    Draper NR, Smith H (1998) Regression analysis. Wiley-Interscience, Hoboken
    LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444