Ver registro no DEDALUS
Exportar registro bibliográfico



Structural and nonlinear optical characteristics of in vitro glycation of human low-density lipoprotein, as a function of time (2018)

  • Authors:
  • USP Schools: IF; IF; IF
  • DOI: 10.1007/s13538-018-0600-x
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s13538-018-0600-x (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      MELLO, Ana Paula de Queiroz; ESPINOSA, Daniel Humberto Garcia; REIS, Dennys; ALBATTARNI, Ghadeer; FIGUEIREDO NETO, Antônio Martins. Structural and nonlinear optical characteristics of in vitro glycation of human low-density lipoprotein, as a function of time. Brazilian Journal of Physics, New York, v. 48, n. 6, p. 560-570, 2018. Disponível em: < > DOI: 10.1007/s13538-018-0600-x.
    • APA

      Mello, A. P. de Q., Espinosa, D. H. G., Reis, D., Albattarni, G., & Figueiredo Neto, A. M. (2018). Structural and nonlinear optical characteristics of in vitro glycation of human low-density lipoprotein, as a function of time. Brazilian Journal of Physics, 48( 6), 560-570. doi:10.1007/s13538-018-0600-x
    • NLM

      Mello AP de Q, Espinosa DHG, Reis D, Albattarni G, Figueiredo Neto AM. Structural and nonlinear optical characteristics of in vitro glycation of human low-density lipoprotein, as a function of time [Internet]. Brazilian Journal of Physics. 2018 ; 48( 6): 560-570.Available from:
    • Vancouver

      Mello AP de Q, Espinosa DHG, Reis D, Albattarni G, Figueiredo Neto AM. Structural and nonlinear optical characteristics of in vitro glycation of human low-density lipoprotein, as a function of time [Internet]. Brazilian Journal of Physics. 2018 ; 48( 6): 560-570.Available from:

    Referências citadas na obra
    International Diabetes Federation. IDF Diabetes Atlas Seventh Edition 2015, Online version of IDF Diabetes Atlas:
    T. Filippatos, V. Tsimihodimos, E. Pappa, M. Elisaf, Curr. Vasc. Pharmacol. 15, 566 (2017)
    R. Neviere, Y. Yu, L. Wang, F. Tessier, E. Boulanger, Glycoconj. J. 33, 607 (2016)
    A.P.Q. Mello, I.T. da Silva, D.S. Abdalla, N.R.T. Damasceno, Electronegative low-density lipoprotein: origin and impact on health and disease. Atherosclerosis 215, 257–265 (2011)
    R. Nagai, K. Matsumoto, X. Ling, H. Suzuki, T. Araki, S. Horiuchi, Glycolaldehyde, a reactive intermediate for advanced glycation end products, plays an important role in the generation of an active ligand for the macrophage scavenger receptor. Diabetes 49, 1714–1723 (2000)
    A. Zmysłowski, A. Szterk, Current knowledge on the mechanism of atherosclerosis and pro-atherosclerotic properties of oxysterols. Lipids Health Dis. 16, 188 (2017)
    C.M. Parrinello, E. Selvin, Beyond HbA1c and glucose: the role of nontraditional glycemic markers in diabetes diagnosis, prognosis, and management. Curr. Diab. Rep. 14, 548 (2014)
    H. Yoshida, R. Kisugi, Mechanisms of LDL oxidation. Clin. Chim. Acta 411, 1875–1882 (2010)
    M. Brownlee, Nature 414, 813 (2001)
    M.F. Lopes-Virella, K.J. Hunt, N.L. Baker, J. Lachin, D.M. Natah, G. Virella, Diabetes 60, 582 (2011)
    N.N. Younis, H. Soran, P. Pemberton, V. Charlton-Menys, M.M. Elseweidy, P.N. Durrington, Small dense LDL is more susceptible to glycation than more buoyant LDL in Type 2 diabetes. Clin. Sci. 124, 343–349 (2013)
    S. Ahmad, M.S. Khan, F. Akhter, M.S. Khan, A. Khan, J.M. Ashraf, R.P. Pandey, U. Shahab, Glycoxidation of biological macromolecules: a critical approach to halt the menace of glycation. Glycobiology 24, 979–990 (2014)
    G. Aldini, G. Vistoli, M. Stefek, N. Chondrogianni, T. Grune, J. Sereikaite, I. Sadowska-Bartosz, G. Bartosz, Molecular strategies to prevent, inhibit, and degrade advanced glycoxidation and advanced lipoxidation end products. Free Radic. Res. 47, 93–137 (2013)
    A.J. Jenkins, J.D. Best, R.L. Klein, T.J. Lyons, Lipoproteins, glycoxidation and diabetic angiopathy. Diabetes Metab. Res. Rev. 20, 349–368 (2004)
    G. Sobal, J. Menzel, H. Sinzinger, Prostaglandins, leukotrienes and essential fatty acids. 63, 177 (2000)
    J.W. Baynes, S.R. Thorpe, Glycoxidation and lipoxidation in atherogenesis. Free Radic. Biol. Med. 28, 1708–1716 (2000)
    G.H. Tomkin, D. Owens, Abnormalities in apo B-containing lipoproteins in diabetes and atherosclerosis. Diabetes Metab. Res. Rev. 17, 27–43 (2001)
    Z. Géhl, E. Bakondi, M.D. Resch, C. Hegeds, K. Kovács, P. Lakatos, A. Szabó, Z. Nagy, L. Virág, Redox Biol 9, 100 (2016)
    A.N. Orekhov, Y.V. Bobryshev, I.A. Sobenin, A.A. Melnichenko, D.A. Chistiakov, Modified low density lipoprotein and lipoprotein-containing circulating immune complexes as diagnostic and prognostic biomarkers of atherosclerosis and type 1 diabetes macrovascular disease. Int. J. Mol. Sci. 15, 12807–12841 (2014)
    C.P. Hodgkinson, R.C. Laxton, K. Patel, S. Ye, Advanced glycation end-product of low density lipoprotein activates the Toll-Like 4 receptor pathway implications for diabetic atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 28, 2275–2281 (2008)
    J.N. Adams, S.E. Martelle, L.M. Raffield, B.I. Freedman, C.D. Langefeld, F.C. Hsu, J.A. Maldjian, J.D. Williamson, C.E. Hugenschmidt, J.J. Carr, A.J. Cox, D.W. Bowden, Analysis of advanced glycation end products in the DHS Mind Study. J. Diabetes Complicat. 30, 262–268 (2016)
    D.F. Meyer, A.S. Nealis, C.H. MacPhee, P.H.E. Groot, K.E. Suckling, K.R. Bruckdorfer, S.J. Perkins, Time-course studies by synchrotron X-ray solution scattering of the structure of human low-density lipoprotein during Cu2+-induced oxidation in relation to changes in lipid composition. Biochem. J. 319, 217–227 (1996)
    C.L.P. Oliveira, P.R. Santos, A.M. Monteiro, A.M. Figueiredo Neto, Effect of oxidation on the structure of human low- and high-density lipoproteins. Biophys. J. 106, 2595–2605 (2014)
    S.L. Gómez, F.L.S. Cuppo, A.M. Figueiredo Neto, T. Kosa, M. Muramatsu, R.J. Horowicz, Rev. Phys. 59, 3059 (1999)
    S. Alves, A.M. Figueiredo Neto, Advances in the non-linear optical investigation of lyotropic-like low-density human lipoproteins in the native and oxidised states. Liq. Cryst. 41, 465–470 (2014)
    P.R. Santos, T.C. Genaro-Mattos, A.M. Monteiro, S. Miyamoto, A.M. Figueiredo Neto, J. Biomed. Opt. 17, 105003 (2012)
    A.M. Monteiro, M.A.N. Jardini, V. Giampaoli, S. Alves, A.M. Figueiredo Neto, M. Gidlund, Measurement of the nonlinear optical response of low-density lipoprotein solutions from patients with periodontitis before and after periodontal treatment: evaluation of cardiovascular risk markers. J. Biomed. Opt. 17, 115004 (2012)
    A.M. Monteiro, M.A. Jardini, S. Alves, V. Giampaoli, E.C. Aubin, A.M. Figueiredo Neto, M. Gidlund, Cardiovascular disease parameters in periodontitis. J. Periodontol. 80, 378–388 (2009)
    M.C.P. Freitas, A.M. Figueiredo Neto, V. Giampaoli, E.C.Q. Aubin, M.M.A.L. Barbosa, N.R.T. Damasceno, Z-scan analysis: a new method to determine the oxidative state of low-density lipoprotein and its association with multiple cardiometabolic biomarkers. Braz. J. Phys. 46, 163–169 (2016)
    H.A. Fonseca, C.R. Bittencourt, F.A. Fonseca, A.M. Monteiro, P.R. Santos, L. Camargo, L.A. Costa, A. Murad, M. Gidlund, A.M. Figueiredo Neto, M.C. Izar, Non-linear optical responses of low-density lipoprotein are associated with intima-media thickness of carotid artery in athletes. Cell Biochem. Biophys. 74, 253–262 (2016)
    R.J. Havel, H.A. Eder, J.H. Bragdon, The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J. Clin. Invest. 34, 1345–1353 (1955)
    G. Cazzolato, P. Avogaro, G. Bittolo-Bon, Characterization of a more electronegatively charged LDL subfraction by ion exchange HPLC. Free Radic. Biol. Med. 11, 247–253 (1991)
    M. Lu, O. Gursky, Biomol. Concepts 4, 501 (2013)
    P.K. Smith, R.I. Krohn, G.T. Hermanson, A.K. Mallia, F.H. Gartner, M.D. Provenzano, E.K. Fujimoto, N.M. Goeke, B.J. Olson, D.C. Klenk, Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76–85 (1985)
    M. Sheik-Bahae, A.A. Said, E.W. Van Stryland, High-sensitivity, single-beam n_2 measurements. Opt. Lett. 14, 955–957 (1989)
    W. Schärtl, Light scattering from polymer solutions and nanoparticle dispersions (Springer-Verlag, Berlin, 2007), pp. 57–58
    E.B. Knudsen, H.O. Sørensen, J.P. Wright, G. Goret, J. Kieffer, FabIO: easy access to two-dimensional X-ray detector images in Python. J. Appl. Crystallogr. 46, 537–539 (2013)
    G. Ashiotis, A. Deschildre, Z. Nawaz, J.P. Wright, D. Karkoulis, F.E. Picca, J. Kieffer, The fast azimuthal integration Python library: pyFAI. J. Appl. Crystallogr. 48, 510–519 (2015)
    D. Orthaber, A. Bergmann, O. Glatter, SAXS experiments on absolute scale with Kratky systems using water as a secondary standard. J. Appl. Crystallogr. 33, 218–225 (2000)
    E. Jones, T. Oliphant, P. Peterson, et al. . Accessed 01 February 2018
    S. Maric, T.K. Lind, J. Lyngsø, M. Cárdenas, J.S. Pedersen, Modeling small-angle X-ray scattering data for low-density lipoproteins: insights into the fatty core packing and phase transition. ACS Nano 11, 1080–1090 (2017)
    C.L.P. Oliveira, A.M. Monteiro, A.M. Figueiredo Neto, Structural modifications and clustering of low-density lipoproteins in solution induced by heating. Braz. J. Phys. 44, 753–764 (2014)
    V. Kumar, S.J. Butcher, K. Öörni, P. Engelhardt, J. Heikkonen, K. Kaski, M. Ala-Korpela, P.T. Kovanen, Three-dimensional cryoEM reconstruction of native LDL particles to 16Å resolution at physiological body temperature. PLoS One 6, e18841 (2011)
    S.L. Gómez, A.M. Monteiro, S.R. Rabbani, A.C. Bloisee, S.M. Carneiro, S. Alves, M. Gidlund, D.S.P. Abdalla, A.M. Figueiredo Neto, Cu and Fe metallic ions-mediated oxidation of low-density lipoproteins studied by NMR, TEM and Z-scan technique. Chem. Phys. Lipids 163, 545–551 (2010)
    A.L. Sehnem, D. Espinosa, E.S. Gonçalves, A.M. Figueiredo Neto, Thermal lens phenomenon studied by the Z-scan technique: measurement of the thermal conductivity of highly absorbing colloidal solutions. Braz. J. Phys. 46, 547–555 (2016)
    S. Alves, A. Bourdon, A.M. Figueiredo Neto, Generalization of the thermal lens model formalism to account for thermodiffusion in a single-beam Z-scan experiment: determination of the Soret coefficient. J. Opt. Soc. Am. B 20, 713 (2003)
    J.P. Gordon, R.C.C. Leite, R.S. Moore, S.P.S. Porto, J.R. Whinnery, Long‐transient effects in lasers with inserted liquid samples. J. Appl. Phys. 36, 3–8 (1965)
    M. Quintem, Optical properties of nanoparticle systems: Mie and beyond (Wiley-VCH, Weinheim, 2010)
    C. Bohren, D. Huffman, Absorption and scattering of light by small particles (Wiley, New York, 1983)
    M. Derakhshesh, M.R. Gray, G.P. Dechaine, Energy Fuel 27, 680 (2013)
    M. de Spirito, R. Brunelli, G. Mei, F.R. Bertani, G. Ciasca, G. Greco, M. Papi, G. Arcovito, F. Ursini, T. Parasassi, Low density lipoprotein aged in plasma forms clusters resembling subendothelial droplets: aggregation via surface Sites. Biophys. J. 90, 4239–4247 (2006)
    H. Itabe, Oxidative modification of LDL: its pathological role in atherosclerosis. Clin. Rev. Allergy Immunol. 37, 4–11 (2009)
    T. Obama, R. Kato, Y. Masuda, K. Takahashi, T. Aiuchi, H. Itabe, Analysis of modified apolipoprotein B-100 structures formed in oxidized low-density lipoprotein using LC-MS/MS. Proteomics 7, 2132–2141 (2007)
    G. Spiteller, The relation of lipid peroxidation processes with atherogenesis: a new theory on atherogenesis. Mol. Nutr. Food Res. 49, 999–1013 (2005)
    Últimas obras dos mesmos autores vinculados com a USP cadastradas na BDPI: