Ver registro no DEDALUS
Exportar registro bibliográfico



Donepezil effects on cholesterol and oxysterol plasma levels of Alzheimer's disease patients (2018)

  • Authors:
  • USP Schools: FM; FM
  • DOI: 10.1007/s00406-017-0838-2
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s00406-017-0838-2 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      COSTA, Alana C.; JOAQUIM, Helena P. G.; NUNES, Valeria S.; et al. Donepezil effects on cholesterol and oxysterol plasma levels of Alzheimer's disease patients. European archives of psychiatry and clinical neuroscience, Heidelberg, v. 268, n. 5, p. 501-507, 2018. Disponível em: < > DOI: 10.1007/s00406-017-0838-2.
    • APA

      Costa, A. C., Joaquim, H. P. G., Nunes, V. S., Kerr, D. S., Ferreira, G. S., Forlenza, O. V., et al. (2018). Donepezil effects on cholesterol and oxysterol plasma levels of Alzheimer's disease patients. European archives of psychiatry and clinical neuroscience, 268( 5), 501-507. doi:10.1007/s00406-017-0838-2
    • NLM

      Costa AC, Joaquim HPG, Nunes VS, Kerr DS, Ferreira GS, Forlenza OV, Gattaz WF, Talib LL. Donepezil effects on cholesterol and oxysterol plasma levels of Alzheimer's disease patients [Internet]. European archives of psychiatry and clinical neuroscience. 2018 ; 268( 5): 501-507.Available from:
    • Vancouver

      Costa AC, Joaquim HPG, Nunes VS, Kerr DS, Ferreira GS, Forlenza OV, Gattaz WF, Talib LL. Donepezil effects on cholesterol and oxysterol plasma levels of Alzheimer's disease patients [Internet]. European archives of psychiatry and clinical neuroscience. 2018 ; 268( 5): 501-507.Available from:

    Referências citadas na obra
    Adibhatla RM, Hatcher JF (2008) Altered lipid metabolism in brain injury and disorders. Subcell Biochem 49:241–268
    Adibhatla RM, Hatcher JF, Dempsey RJ (2006) Lipids and lipidomics in brain injury and diseases. AAPS J 8:314–321
    Maxfield FR, Tabas I (2005) Role of cholesterol and lipid organization in disease. Nature 438:612–621
    Talib LL, Hototian SR, Joaquim HP, Forlenza OV, Gattaz WF (2015) Increased iPLA2 activity and levels of phosphorylated GSK3B in platelets are associated with donepezil treatment in Alzheimer’s disease patients. Eur Arch Psychiatry Clin Neurosci 265:701–706
    Schaeffer EL, Forlenza OV, Gattaz WF (2009) Phospholipase A2 activation as a therapeutic approach for cognitive enhancement in early-stage Alzheimer disease. Psychopharmacology 202:37–51
    Gattaz WF, Levy R, Cairns NJ, Förstl H, Braus DF, Maras A (1996) Relevance of metabolism of membrane phospholipids for Alzheimer dementia. Fortschr Neurol Psychiatr 64:8–12
    Vance JE (2012) Dysregulation of cholesterol balance in the brain: contribution to neurodegenerative diseases. Dis Model Mech 5:746–755
    Martins IJ, Berger T, Sharman MJ, Verdile G, Fuller SJ, Martins RN (2009) Cholesterol metabolism and transport in the pathogenesis of Alzheimer’s disease. J Neurochem 111:1275–1308
    Vance JE, Hayashi H, Karten B (2005) Cholesterol homeostasis in neurons and glial cells. Semin Cell Dev Biol 2:193–212
    Björkhem I, Lütjohann D, Diczfalusy U, Ståhle L, Ahlborg G, Wahren J (1998) Cholesterol homeostasis in human brain: turnover of 24S-hydroxycholesterol and evidence for a cerebral origin of most of this oxysterol in the circulation. J Lipid Res 8:1594–1600
    Lund EG, Guileyardo JM, Russell DW (1999) cDNA cloning of cholesterol 24-hydroxylase, a mediator of cholesterol homeostasis in the brain. Proc Natl Acad Sci USA 13:7238–7243
    Tedde A, Rotondi M, Cellini E et al (2006) Lack of association between the CYP46 gene polymorphism and Italian late-onset sporadic Alzheimer’s disease. Neurobiol Aging 5:773-e1
    Garcia AN, Muniz MT, e Silva HRS, da Silva HA, Athayde-Junior L (2009) Cyp46 polymorphisms in Alzheimer’s disease: a review. J Mol Neurosci 3:342–345
    Abildayeva K, Jansen PJ, Hirsch-Reinshagen VW Bloks, Bakker AH, Ramaekers J, de Ventre FC, Groen AK, Wellington CL, Kuipers F, Mulder M (2006) 24(S)-hydroxycholesterol participates in a liver X receptor-controlled pathway in astrocytes that regulates apolipoprotein E-mediated cholesterol efflux. J Biol Chem 281:12799–12808
    Leoni V, Caccia C (2011) Oxysterols as biomarkers in neurodegenerative diseases. Chem Phys Lipids 164:515–524
    Gosselet F, Saint-Pol J, Fenart L (2014) Effects of oxysterols on the blood-barrier: implications for Alzheimer’s disease. Biochem Biophys Res Commun 446:687–691
    Mahley RW (2016) Central nervous system lipoproteins: ApoE and regulation of cholesterol metabolism. Arterioscler Thromb Vasc Biol 36:1305–1315
    Solfrizzi V, Panza F, D’Introno A et al (2002) Lipoprotein(a), apolipoprotein E genotype, and risk of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 72:732–736
    Bu G (2009) Apolipoprotein E and its receptors in Alzheimer’s disease, pathways, pathogenesis and therapy. Nat Rev Neurosci 10:333–344
    Posse-de-Chaves E, Narayanaswami V (2008) Apolipoprotein E and cholesterol in aging and disease in the brain. Future Lipidol 3:505–530
    Bjorkhem I, Leoni V, Meaney S (2010) Genetic connections between neurological disorders and cholesterol metabolism. J Lipid Res 51:2489–2503
    Koudinov AR, Koudinova NV (2001) Essential role for cholesterol in synaptic plasticity and neuronal degeneration. FASEB J 15:1858–1860
    Teunissen CE, Lütjohann D, von-Bergmann K et al (2003) Combination of serum markers related to several mechanisms in Alzheimer’s disease. Neurobiol Aging 24:893–902
    Popp J, Lewczuk P, Kölsch H et al (2012) Cholesterol metabolism is associated with soluble amyloid precursor protein production in Alzheimer’s disease. J Neurochem 123:310–316
    Besga A, Cedazo-Minguez A, Kåreholt I et al (2012) Differences in brain cholesterol metabolism and insulin in two subgroups of patients with different CSF biomarkers but similar white matter lesions suggest different pathogenic mechanisms. Neurosci Lett 510:121–126
    Popp J, Meichsner S, Kölsch H et al (2013) Cerebral and extracerebral cholesterol metabolism and CSF markers of Alzheimer’s Disease. Biochem Pharmacol 86:32–42
    Bretillon L, Lutjohann D, Stahle L et al (2000) Plasma levels of 24S-hydroxycholesterol reflect the balance between cerebral production and hepatic metabolism and are inversely related to body surface. J Lipid Res 41:840–845
    Bretillon L, Siden Å, Wahlund LO et al (2000) Plasma levels of 24S-hydroxycholesterol in patients with neurological diseases. Neurosci Lett 293:87–90
    Karrenbauer VD, Leoni V, Lim ET et al (2006) Plasma cerebrosterol and magnetic resonance imaging measures in multiple sclerosis. Clin Neurol Neurosurg 108:456–460
    Kölsch H, Heun R, Kerksiek A, Bergmann KV, Maier W, Lutjohann D (2004) Altered levels of plasma 24S- and 27-hydroxycholesterol in demented patients. Neurosci Lett 368:303–308
    Leoni V, Mariotti C, Nanetti L et al (2011) Whole body cholesterol metabolism is impaired in Huntington’s disease. Neurosci Lett 494:245–249
    Qureischie H, Heun R, Lutjohann D et al (2008) CETP polymorphisms influence cholesterol metabolism but not Alzheimer’s disease risk. Brain Res 1232:1–6
    Solomon A, Leoni V, Kivipelto M et al (2009) Plasma levels of 24S-hydroxycholesterol reflect brain volumes in patients without objective cognitive impairment but not in those with Alzheimer’s disease. Neurosci Lett 462:89–93
    Zuliani G, Donnorso MP, Bosi C et al (2011) Plasma 24S-hydroxycholesterol levels in elderly subjects with late onset Alzheimer’s disease or vascular dementia: a case control study. BMC Neurol 11:121
    Prasanthi JR, Huls A, Thomasson S, Thompson A, Schommer E, Ghribi O (2009) Differential effects of 24-hydroxycholesterol and 27-hydroxycholesterol on beta-amyloid precursor protein levels and processing in human neuroblastoma SH-SY5Y cells. Mol Neurodegener 6:4–7
    Famer D, Meaney S, Mousavi M, Nordberg A, Bjorkem I, Crisby M (2007) Regulation of alpha- and beta-secretase activity by oxysterols: cerebrosterol stimulates processing of APP via the alpha-secretase pathway. Biochem Biophys Res Commun 359:46–50
    Dasari B, Prasanthi JR, Marwarha G, Singh BB, Ghribi O (2010) The oxysterol 27-hydroxycholesterol increases β-amyloid and oxidative stress in retinal pigment epithelial cells. BMC Ophthalmol 13:10–22
    Prasanthi JR, Larson T, Schommer J, Ghribi O (2011) Silencing GADD153/CHOP gene expression protects against Alzheimer’s disease-like pathology induced by 27-hydroxycholesterol in rabbit hippocampus. PLoS One 6:2640
    Leyhe T, Hoffmann N, Stransky E, Laske C (2009) Increase of SCF plasma concentration during donepezil treatment of patients with early Alzheimer’s disease. Int J Neuropsychopharmacol 12:1319–1326
    Shen H, Kihara T, Hongo H et al (2010) Neuroprotection by donepezil against glutamate excitotoxicity involves stimulation of alpha7 nicotinic receptors and internalization of NMDA receptors. Br J Pharmacol 161:127–139
    Noh MY, Koh SH, Kim SM, Maurice T, Ku SK, Kim SH (2013) Neuroprotective effects of donepezil against Aβ42-induced neuronal toxicity are mediated through not only enhancing PP2A activity but also regulating GSK-3β and nAChRs activity. J Neurochem 127:562–574
    Cacabelos R (2007) Donepezil in Alzheimer’s disease: from conventional trials to pharmacogenetics. Neuropsychiatr Dis Treat 3:303–333
    McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34:939–944
    Roth M, Tym E, Mountjoy CQ et al (1986) CAMDEX: a standardized Instrument for the diagnosis of mental disorders in the elderly with special reference to early detection of dementia. Br J Psychiatry 149:698–709
    Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”—a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198
    Dzeletovic S, Breuer O, Lund E, Diczfalusy U (1995) Determination of cholesterol oxidation products in human plasma by isotope dilution-mass spectrometry. Anal Biochem 22:573–580
    Laitinen J, Samarut J, Holtta E (1994) A nontoxic and versatile protein salting-out method for isolation of DNA. Biotechniques 17:316–322
    Forlenza OV, Diniz BS, Talib LL et al (2010) Clinical and biological predictors of Alzheimer’s disease in patients with amnestic mild cognitive impairment. Rev Bras Psiquiatr 32:216–222
    Burkard I, von Eckardstein A, Waeber A, Vollenweider P, Rentsch KM (2007) Lipoprotein distribution and biological variation of 24S- and 27-hydroxycholesterol in healthy volunteers. Atherosclerosis 194:71–78
    Babiker A, Diczfalusy U (1998) Transport of side-chain oxidized oxysterols in the human circulation. Biochim Biophys Acta 1392:333–339
    Frears ER, Stephens DJ, Walters CE, Davies H, Austen BM (1999) The role of cholesterol in the biosynthesis of beta-amyloid. NeuroReport 10:1699–1705
    Yamanaka K, Saito Y, Yamamori T, Urano Y, Noguchi N (2011) 24(S)-hydroxycholesterol induces neuronal cell death through necroptosis, a form of programmed necrosis. J Biol Chem 286:24666–24673
    Blennow K, de Leon MJ, Zetterberg H (2006) Alzheimer disease. Lancet 368:387–403
    Papassotiropoulos A, Lütjohann D, Bagli M et al (2000) Plasma 24S-hydroxycholesterol, a peripheral indicator of neuronal degeneration and potential state marker for Alzheimer’s disease. NeuroReport 11:1959–1962
    Juliano L, Monticolo R, Straface G et al (2010) Vitamin E and enzymatic/oxidative stress-driven oxysterols in amnestic mild cognitive impairment subtypes and Alzheimer’s disease. J Alzheimers Dis 21:1383–1392
    Lütjohann D, Papassotiropoulos A, Björkhem I et al (2000) Plasma 24S-hydroxycholesterol (cerebrosterol) is increased in Alzheimer and vascular demented patients. J Lipid Res 41:195–198
    Heverin M, Bogdanovic N, Lütjohann D et al (2004) Changes in the levels of cerebral and extracerebral sterols in the brain of patients with Alzheimer’s disease. J Lipid Res 45:186–193
    Marwarha G, Dasari B, Prabhakara JP, Schommer J, Ghribi O (2010) β-Amyloid regulates leptin expression and tau phosphorylation through the mTORC1 signaling pathway. J Neurochem 115:373–384
    Lim WLF, Martins IJ, Martins RN (2014) The involvement of lipids in Alzheimer’s disease. J Genet Genom 41:261–271
    Cheng H, Vetrivel KS, Gong P, Parent A, Thinakaran G (2007) Mechanisms of disease: new therapeutic strategies for Alzheimer’s disease—targeting amyloid precursor protein processing in lipid rafts. Nat Clin Pract Neurol 7:374–382
    Pappolla MA, Bryant-Thomas T, Herbert D et al (2003) Mild hypercholesterolemia is an early risk factor for the development of Alzheimer amyloid pathology. Neurology 61:199–205
    Solomon A, Kivipelto M, Wolozon B, Zhou J, Whitmer RA (2009) Midlife serum cholesterol and increased risk of Alzheimer’s and vascular dementia three decades later. Dement Geriatr Cogn Disord 28:75–80
    Wood WG, Li L, Muller WE, Eckert GP (2014) Cholesterol as a causative factor in Alzheimer’s disease: a debatable hypothesis. J Neurochem 129:559–572
    Leoni V, Caccia C (2013) 24S-hydroxycholesterol in plasma: a marker of cholesterol turnover in neurodegenerative diseases. Biochimie 95:595–612
    Hong C, Tontonoz P (2014) Liver X receptors in lipid metabolism: opportunities for drug discovery. Nat Rev Drug Discov 6:433–444
    Seo Y, Shin Y, Kim HS et al (2014) Donepezil enhances Purkinje cell survival and alleviates motor dysfunction by inhibiting cholesterol synthesis in a murine model of Niemann Pick disease type C. J Neuropathol Exp Neurol 73:234–243
    Adunsky A, Chesnin V, Ravona R, Harats D, Davidson M (2004) Plasma lipid levels in Alzheimer’s disease patients treated by Donepezil hydrochloride: a cross-sectional study. Arch Gerontol Geriatr 38:61–68