Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

The role of negative conductances in neuronal subthreshold properties and synaptic integration (2017)

  • Authors:
  • USP affiliated authors: SILVA FILHO, ANTONIO CARLOS ROQUE DA - FFCLRP ; LEÃO, RICARDO MAURICIO XAVIER - FMRP
  • USP Schools: FFCLRP; FMRP
  • DOI: 10.1007/s12551-017-0300-8
  • Subjects: NEUROLOGIA; SINAPSE
  • Keywords: Neuronal membrane; Neuronal subthreshold properties; Passive cable theory; Synaptic integration; Voltage-dependent inward currents
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s12551-017-0300-8 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: green

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      CEBALLOS, Cesar C.; ROQUE, Antonio Carlos; LEÃO, Ricardo Maurício Xavier. The role of negative conductances in neuronal subthreshold properties and synaptic integration. Biophysical Reviews, Heidelberg, v. 9, n. 5, p. 827-834, 2017. Disponível em: < http://dx.doi.org/10.1007/s12551-017-0300-8 > DOI: 10.1007/s12551-017-0300-8.
    • APA

      Ceballos, C. C., Roque, A. C., & Leão, R. M. X. (2017). The role of negative conductances in neuronal subthreshold properties and synaptic integration. Biophysical Reviews, 9( 5), 827-834. doi:10.1007/s12551-017-0300-8
    • NLM

      Ceballos CC, Roque AC, Leão RMX. The role of negative conductances in neuronal subthreshold properties and synaptic integration [Internet]. Biophysical Reviews. 2017 ; 9( 5): 827-834.Available from: http://dx.doi.org/10.1007/s12551-017-0300-8
    • Vancouver

      Ceballos CC, Roque AC, Leão RMX. The role of negative conductances in neuronal subthreshold properties and synaptic integration [Internet]. Biophysical Reviews. 2017 ; 9( 5): 827-834.Available from: http://dx.doi.org/10.1007/s12551-017-0300-8

    Referências citadas na obra
    Agrawal N, Hamam BN, Magistretti J, Alonso A, Ragsdale DS (2001) Persistent sodium channel activity mediates subthreshold membrane potential oscillations and low-threshold spikes in rat entorhinal cortex layer V neurons. Neuroscience 102:53–64
    Andreasen M, Lambert JD (1999) Somatic amplification of distally generated subthreshold EPSPs in rat hippocampal pyramidal neurones. J Physiol 519:85–100
    Boehlen A, Henneberger C, Heinemann U, Erchova I (2012) Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. J Neurophysiol 109:445–463
    Branco T, Tozer A, Magnus CJ, Sugino K, Tanaka S, Lee AK, Wood JN, Sternson SM (2016) Near-perfect synaptic integration by Na v 1.7 in hypothalamic neurons regulates body weight. Cell 165:1749–1761
    Buchanan JT, Moore LE, Hill R, Wallén P, Grillner S (1992) Synaptic potentials and transfer functions of lamprey spinal neurons. Biol Cybern 67:123–131
    Bui TV, Grande G, Rose PK (2008) Multiple modes of amplification of synaptic inhibition to motoneurons by persistent inward currents. J Neurophysiol 99:571–582
    Carter BC, Giessel AJ, Sabatini BL, Bean BP (2012) Transient sodium current at subthreshold voltages: activation by EPSP waveforms. Neuron 75:1081–1093
    Ceballos C, Roque A, Leao R (2017) A negative slope conductance of the persistent sodium current prolongs subthreshold depolarizations. Biophys J. doi: 10.1016/j.bpj.2017.06.047
    Connelly WM, Crunelli V, Errington AC (2016) Passive synaptic normalization and input synchrony-dependent amplification of cortical feedback in thalamocortical neuron dendrites. J Neurosci 36:3735–3754
    Crunelli V, Mayer ML (1984) Mg 2+ dependence of membrane resistance increases evoked by NMDA in hippocampal neurones. Brain Res 311:392–396
    Curti S, Gomez L, Budelli R, Pereda AE (2008) Subthreshold sodium current underlies essential functional specializations at primary auditory afferents. J Neurophysiol 99:1683–1699
    Dagostin AA, Lovell PV, Hilscher MM, Mello CV, Leão RM (2015) Control of Phasic firing by a background leak current in avian forebrain auditory neurons. Front Cell Neurosci 9:471. doi: 10.3389/fncel.2015.00471
    Deisz RA, Fortin G, Zieglgänsberger W (1991) Voltage dependence of excitatory postsynaptic potentials of rat neocortical neurons. J Neurophysiol 65:371–382
    Economo MN, Martínez JJ, White JA (2014) Membrane potential-dependent integration of synaptic inputs in entorhinal stellate neurons. Hippocampus 24:1493–1505
    Enyedi P, Czirják G (2010) Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol Rev 90:559–605
    Farries MA, Kita H, Wilson CJ (2010) Dynamic spike threshold and zero membrane slope conductance shape the response of subthalamic neurons to cortical input. J Neurosci 30:13180–13191
    Fernandez FR, Malerba P, White JA (2015) Non-linear membrane properties in entorhinal cortical stellate cells reduce modulation of input-output responses by voltage fluctuations. PLoS Comput Biol 11:e1004188. doi: 10.1371/journal.pcbi.1004188
    Finkelstein A, Mauro A (2011) Physical principles and formalisms of electrical excitability. In: Kandel ER (ed) Comprehensive physiology. American Physiological Society, Bethesda, pp 161–213
    Fricker D, Miles R (2000) EPSP amplification and the precision of spike timing in hippocampal neurons. Neuron 28:559–569
    Ghaffari BV, Kouhnavard M, Aihara T, Kitajima T (2015) Mathematical modeling of subthreshold resonant properties in pyloric dilator neurons. Biomed Res Int 2015:21
    Ghigliazza RM, Holmes P (2004) Minimal models of bursting neurons: how multiple currents, conductances, and timescales affect bifurcation diagrams. SIAM J App Dyn Syst 3:636–670
    Gillessen T, Alzheimer C (1997) Amplification of EPSPs by low Ni2+- and amiloride-sensitive Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. J Neurophysiol 77:1639–1643
    Goldberg JA, Deister CA, Wilson CJ (2007) Response properties and synchronization of rhythmically firing dendritic neurons. J Neurophysiol 97:208–219
    González-Burgos G, Barrionuevo G (2001) Voltage-gated sodium channels shape subthreshold EPSPs in layer 5 pyramidal neurons from rat prefrontal cortex. J Neurophysiol 86:1671–1684
    Gutfreund Y, Segev I (1995) Subthreshold oscillations and resonant frequency in guinea-pig cortical neurons: physiology and modelling. J Physiol 483:621–640
    Hardie JB, Pearce RA (2006) Active and passive membrane properties and intrinsic kinetics shape synaptic inhibition in hippocampal CA1 pyramidal neurons. J Neurosci 26:8559–8569
    Hirsch JA, Gilbert CD (1991) Synaptic physiology of horizontal connections in the cat's visual cortex. J Neurosci 11:1800–1809
    Hirsch JA, Oertel D (1988) Intrinsic properties of neurones in the dorsal cochlear nucleus of mice, in vitro. J Physiol 396:535–548
    Hoffman DA, Magee JC, Colbert CM, Johnston D (1997) K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387:869–875
    Hu H, Vervaeke K, Storm JF (2002) Two forms of electrical resonance at theta frequencies, generated by M-current, h-current and persistent Na+ current in rat hippocampal pyramidal cells. J Physiol 545:783–805
    Hutcheon B, Yarom Y (2000) Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends Neurosci 23:216–222
    Hutcheon B, Miura RM, Puil E (1996a) Models of subthreshold membrane resonance in neocortical neurons. J Neurophysiol 76:698–714
    Hutcheon B, Miura RM, Puil E (1996b) Subthreshold membrane resonance in neocortical neurons. J Neurophysiol 76:683–697
    Izhikevich EM (2007) Dynamical systems in neuroscience. MIT Press, Cambridge
    Jackson WF (2016) Boosting the signal: endothelial inward rectifier K+ channels. Microcirculation 24(3):e12319. doi: 10.1111/micc.12319
    Jacobson GA, Diba K, Yaron-Jakoubovitch A, Oz Y, Koch C, Segev I, Yarom Y (2005) Subthreshold voltage noise of rat neocortical pyramidal neurones. J Physiol 564:145–160
    Johnston D, Wu SMS (1994) Foundations of cellular neurophysiology. MIT press, Cambridge, pp 39–53
    Káli S, Zemankovics R (2012) The effect of dendritic voltage-gated conductances on the neuronal impedance: a quantitative model. J Comput Neurosci 33:257–284
    Klink R, Alonso A (1993) Ionic mechanisms for the subthreshold oscillations and differential electroresponsiveness of medial entorhinal cortex layer II neurons. J Neurophysiol 70:144–157
    Klink R, Alonso A (1997) Ionic mechanisms of muscarinic depolarization in entorhinal cortex layer II neurons. J Neurophysiol 77:1829–1843
    Koch C (1984) Cable theory in neurons with active, linearized membranes. Biol Cybern 50:15–33
    Koch C (1998) Biophysics of computation: information processing in single neurons. Oxford University Press, New York, pp 381–400
    Leao RM, Li S, Doiron B, Tzounopoulos T (2012) Diverse levels of an inwardly rectifying potassium conductance generate heterogeneous neuronal behavior in a population of dorsal cochlear nucleus pyramidal neurons. J Neurophysiol 107:3008–3019
    Lipowsky R, Gillessen T, Alzheimer C (1996) Dendritic Na+ channels amplify EPSPs in hippocampal CA1 pyramidal cells. J Neurophysiol 76:2181–2191
    Liu S, Shipley MT (2008) Intrinsic conductances actively shape excitatory and inhibitory postsynaptic responses in olfactory bulb external tufted cells. J Neurosci 28:10311–10322
    MacDonald JF, Porietis AV, Wojtowicz JM (1982) L-aspartic acid induces a region of negative slope conductance in the current-voltage relationship of cultured spinal cord neurons. Brain Res 237:248–253
    Magee JC (1998) Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J Neurosci 18:7613–7624
    Manuel M, Meunier C, Donnet M, Zytnicki D (2007) Resonant or not, two amplification modes of proprioceptive inputs by persistent inward currents in spinal motoneurons. J Neurosci 27:12977–12988
    Mathews PJ, Jercog PE, Rinzel J, Scott LL, Golding NL (2010) Control of submillisecond synaptic timing in binaural coincidence detectors by Kv1 channels. Nat Neurosci 13:601–609
    Matsumoto-Makidono Y, Nakayama H, Yamasaki M, Miyazaki T, Kobayashi K, Watanabe M, Kano M, Sakimura K, Hashimoto K (2016) Ionic basis for membrane potential resonance in neurons of the inferior olive. Cell Rep 16:994–1004
    Moore LE, Buchanan JT, Murphey CR (1995) Localization and interaction of N-methyl-D-aspartate and non-N-methyl-D-aspartate receptors of lamprey spinal neurons. Biophys J 68:96–103
    Moore LE, Buchanan JT, Murphey CR (1994) Anomalous increase in membrane impedance of neurons during NMDA activation. In: Eeckman FH (ed) Computation in neurons and neural systems. Kluwer Academic, Boston, pp 9–14
    Moore LE, Chub N, Tabak J, O’Donovan M (1999) NMDA-induced dendritic oscillations during a soma voltage clamp of chick spinal neurons. J Neurosci 19:8271–8280
    Pape HC, Driesang RB (1998) Ionic mechanisms of intrinsic oscillations in neurons of the basolateral amygdaloid complex. J Neurophysiol 79:217–226
    Porres CP, Meyer EM, Grothe B, Felmy F (2011) NMDA currents modulate the synaptic input–output functions of neurons in the dorsal nucleus of the lateral lemniscus in mongolian gerbils. J Neurosci 31:4511–4523
    Prescott SA, De Koninck Y (2005) Integration time in a subset of spinal lamina I neurons is lengthened by sodium and calcium currents acting synergistically to prolong subthreshold depolarization. J Neurosci 25:4743–4754
    Putzier I, Kullmann PH, Horn JP, Levitan ES (2009) Cav1. 3 channel voltage dependence, not Ca2+ selectivity, drives pacemaker activity and amplifies bursts in nigral dopamine neurons. J Neurosci 29:15414–15419
    Remme MW, Rinzel J (2011) Role of active dendritic conductances in subthreshold input integration. J Comput Neurosci 31:13–30
    Richardson MJ, Brunel N, Hakim V (2003) From subthreshold to firing-rate resonance. J Neurophysiol 89:2538–2554
    Ries CR, Puil E (1999) Ionic mechanism of isoflurane’s actions on thalamocortical neurons. J Neurophysiol 81:1802–1809
    Rosenkranz JA, Johnston D (2007) State-dependent modulation of amygdala inputs by dopamine-induced enhancement of sodium currents in layer V entorhinal cortex. J Neurosci 27:7054–7069
    Rotaru DC, Lewis DA, Gonzalez-Burgos G (2007) Dopamine D1 receptor activation regulates sodium channel-dependent EPSP amplification in rat prefrontal cortex pyramidal neurons. J Physiol 581:981–1000
    Rotstein HG (2015) Subthreshold amplitude and phase resonance in models of quadratic type: nonlinear effects generated by the interplay of resonant and amplifying currents. J Comput Neurosci 38:325–354
    Rotstein HG (2016) The shaping of intrinsic membrane potential oscillations: positive/negative feedback, ionic resonance/amplification, nonlinearities and time scales. J Comput Neurosci 42:133–166
    Rotstein HG, Nadim F (2014) Frequency preference in two-dimensional neural models: a linear analysis of the interaction between resonant and amplifying currents. J Comput Neurosci 37:9–28
    Sabah NH, Leibovic KN (1969) Subthreshold oscillatory responses of the Hodgkin–Huxley cable model for the squid giant axon. Biophys J 9:1206–1222
    Saint Mleux B, Moore LE (2000) Active Dendritic membrane properties of Xenopus larval spinal neurons analyzed with a whole cell soma voltage clamp. J Neurophysiol 83:1381–1393
    Schwindt PC, Crill WE (1995) Amplification of synaptic current by persistent sodium conductance in apical dendrite of neocortical neurons. J Neurophysiol 74:2220–2224
    Scott LL, Mathews PJ, Golding NL (2010) Perisomatic voltage-gated sodium channels actively maintain linear synaptic integration in principal neurons of the medial superior olive. J Neurosci 30:2039–2050
    Smith PD, Brett SE, Luykenaar KD, Sandow SL, Marrelli SP, Vigmond EJ, Welsh DG (2008) KIR channels function as electrical amplifiers in rat vascular smooth muscle. J Physiol 586:1147–1160
    Stafstrom CE, Schwindt PC, Crill WE (1982) Negative slope conductance due to a persistent subthreshold sodium current in cat neocortical neurons in vitro. Brain Res 236:221–226
    Stafstrom CE, Schwindt PC, Chubb MC, Crill WE (1985) Properties of persistent sodium conductance and calcium conductance of layer V neurons from cat sensorimotor cortex in vitro. J Neurophysiol 53:153–170
    Stuart G (1999) Voltage–activated sodium channels amplify inhibition in neocortical pyramidal neurons. Nat Neurosci 2:144–150
    Stuart G, Sakmann B (1995) Amplification of EPSPs by axosomatic sodium channels in neocortical pyramidal neurons. Neuron 15:1065–1076
    Sun H, An S, Luhmann HJ, Kilb W (2014) Resonance properties of GABAergic interneurons in immature GAD67-GFP mouse neocortex. Brain Res 1548:1–11
    Thomson AM, Girdlestone D, West DC (1988) Voltage-dependent currents prolong single-axon postsynaptic potentials in layer III pyramidal neurons in rat neocortical slices. J Neurophysiol 60:1896–1907
    Urban NN, Henze DA, Barrionuevo G (1998) Amplification of perforant-path EPSPs in CA3 pyramidal cells by LVA calcium and sodium channels. J Neurophysiol 80:1558–1561
    Vervaeke K, Hu H, Graham LJ, Storm JF (2006) Contrasting effects of the persistent Na+ current on neuronal excitability and spike timing. Neuron 49:257–270
    Wessel R, Kristan WB, Kleinfeld D (1999) Supralinear summation of synaptic inputs by an invertebrate neuron: dendritic gain is mediated by an “inward rectifier” K+ current. J Neurosci 19:5875–5888
    Williams SR, Stuart GJ (2003) Voltage-and site-dependent control of the somatic impact of dendritic IPSPs. J Neurosci 23:7358–7367
    Wilson CJ (2005) The mechanism of intrinsic amplification of hyperpolarizations and spontaneous bursting in striatal cholinergic interneurons. Neuron 45:575–585
    Wu N, Enomoto A, Tanaka S, Hsiao CF, Nykamp DQ, Izhikevich E, Chandler SH (2005) Persistent sodium currents in mesencephalic v neurons participate in burst generation and control of membrane excitability. J Neurophysiol 93:2710–2722
    Wu N, Hsiao CF, Chandler SH (2001) Membrane resonance and subthreshold membrane oscillations in mesencephalic V neurons: participants in burst generation. J Neurosci 21:3729–3739
    Yamada-Hanff J, Bean BP (2015) Activation of Ih and TTX-sensitive sodium current at subthreshold voltages during CA1 pyramidal neuron firing. J Neurophysiol 114:2376–2389
    Yamashita T, Isa T (2004) Enhancement of excitatory postsynaptic potentials by preceding application of acetylcholine in mesencephalic dopamine neurons. Neurosci Res 49:91–100
    Yang RH, Wang WT, Chen JY, Xie RG, Hu SJ (2009) Gabapentin selectively reduces persistent sodium current in injured type-a dorsal root ganglion neurons. Pain 143:48–55
    Yaron-Jakoubovitch A, Jacobson GA, Koch C, Segev I, Yarom Y (2008) A paradoxical isopotentiality: a spatially uniform noise spectrum in neocortical pyramidal cells. Front Cell Neurosci 2:1–9. doi: 10.3389/neuro.03.003.2008
    Yoshii K, Moore LE, Christensen BN (1988) Effect of subthreshold voltage-dependent conductances on the transfer function of branched excitable cells and the conduction of synaptic potentials. J Neurophysiol 59:706–716
    Zsiros V, Hestrin S (2005) Background synaptic conductance and precision of EPSP-spike coupling at pyramidal cells. J Neurophysiol 93:3248–3256