Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Characterization of strict positive definiteness on products of complex spheres (2019)

  • Authors:
  • USP affiliated authors: MASSA, EUGENIO TOMMASO - ICMC ; PERON, ANA PAULA - ICMC
  • USP Schools: ICMC; ICMC
  • DOI: 10.1007/s11117-018-00641-5
  • Subjects: ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS; SÉRIES DE FOURIER; SÉRIES ORTOGONAIS
  • Keywords: Strictly Positive Definite functions; Product of complex spheres; Generalized Zernike polynomial
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s11117-018-00641-5 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: green

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      CASTRO, Mario Henrique de; MASSA, Eugenio Tommaso; PERON, Ana Paula. Characterization of strict positive definiteness on products of complex spheres. Positivity, Dordrecht, Springer, 2019. Disponível em: < http://dx.doi.org/10.1007/s11117-018-00641-5 > DOI: 10.1007/s11117-018-00641-5.
    • APA

      Castro, M. H. de, Massa, E. T., & Peron, A. P. (2019). Characterization of strict positive definiteness on products of complex spheres. Positivity. doi:10.1007/s11117-018-00641-5
    • NLM

      Castro MH de, Massa ET, Peron AP. Characterization of strict positive definiteness on products of complex spheres [Internet]. Positivity. 2019 ;Available from: http://dx.doi.org/10.1007/s11117-018-00641-5
    • Vancouver

      Castro MH de, Massa ET, Peron AP. Characterization of strict positive definiteness on products of complex spheres [Internet]. Positivity. 2019 ;Available from: http://dx.doi.org/10.1007/s11117-018-00641-5

    Referências citadas na obra
    Barbosa, V.S., Menegatto, V.A.: Strictly positive definite kernels on compact two-point homogeneous spaces. Math. Inequal. Appl. 19(2), 743–756 (2016)
    Barbosa, V.S., Menegatto, V.A.: Strict positive definiteness on products of compact two-point homogeneous spaces. Integral Transforms Spec. Funct. 28(1), 56–73 (2017)
    Berg, C., Christensen, J.P.R., Ressel, P.: Harmonic Analysis on Semigroups. Theory of Positive Definite and Related Functions. Graduate Texts in Mathematics, vol. 100. Springer, New York (1984)
    Berg, C., Peron, A.P., Porcu, E.: Orthogonal expansions related to compact Gelfand pairs. Expos. Math. 36, 259–277 (2018)
    Berg, C., Peron, A.P.: Porcu, E: Schoenberg’s theorem for real and complex Hilbert spheres revisited. J. Approx. Theory 228, 58–78 (2018). arXiv:1701.07214
    Berg, C., Porcu, E.: From Schoenberg coefficients to Schoenberg functions. Constr. Approx. 45(2), 217–241 (2017)
    Bonfim, R.N., Menegatto, V.A.: Strict positive definiteness of multivariate covariance functions on compact two-point homogeneous spaces. J. Multivar. Anal. 152, 237–248 (2016)
    Chen, D., Menegatto, V.A., Sun, X.: A necessary and sufficient condition for strictly positive definite functions on spheres. Proc. Am. Math. Soc. 131(9), 2733–2740 (2003). (electronic)
    Cheney, E.W.: Approximation using positive definite functions. In: Approximation theory VIII, Vol. 1 (College Station, TX, 1995), vol. 6 of Ser. Approx. Decompos., World Sci. Publ., River Edge, NJ, pp. 145–168 (1995)
    Cheney, W., Light, W.: A course in approximation theory. Graduate Studies in Mathematics, vol. 101. American Mathematical Society, Providence, RI, 2009, reprint of the 2000 original
    Christensen, J.P.R., Ressel, P.: Positive definite kernels on the complex Hilbert sphere. Math. Z. 180(2), 193–201 (1982)
    Gneiting, T.: Strictly and non-strictly positive definite functions on spheres. Bernoulli 19(4), 1327–1349 (2013)
    Godement, R.: Introduction aux travaux de A. Selberg. In: Séminaire Bourbaki, vol. 4, Soc. Math. France, Paris, pp. Exp. No. 144, 95–110 (1995)
    Guella, J., Menegatto, V.A.: Strictly positive definite kernels on the torus. Constr. Approx. 46(2), 271–284 (2017)
    Guella, J.C., Menegatto, V.A.: Strictly positive definite kernels on a product of spheres. J. Math. Anal. Appl. 435(1), 286–301 (2016)
    Guella, J.C., Menegatto, V.A.: Schoenberg’s theorem for positive definite functions on products: a unifying framework. J. Fourier Anal. Appl. (2018). https://doi.org/10.1007/s00041-018-9631-5
    Guella, J.C., Menegatto, V.A.: Unitarily invariant strictly positive definite kernels on spheres. Positivity 22(1), 91–103 (2018)
    Guella, J.C., Menegatto, V.A., Peron, A.P.: An extension of a theorem of Schoenberg to products of spheres. Banach J. Math. Anal. 10(4), 671–685 (2016)
    Guella, J.C., Menegatto, V.A., Peron, A.P.: Strictly positive definite kernels on a product of spheres II. SIGMA Symmetry Integrability Geom. Methods Appl. 12 Paper No. 103, 15 (2016)
    Guella, J.C., Menegatto, V.A., Peron, A.P.: Strictly positive definite kernels on a product of circles. Positivity 21(1), 329–342 (2017)
    Hannan, E.J.: Multiple Time Series. Wiley, New York (1970)
    Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1990). corrected reprint of the 1985 original
    Koornwinder, T.: Positivity proofs for linearization and connection coefficients of orthogonal polynomials satisfying an addition formula. J. Lond. Math. Soc. (2) 18(1), 101–114 (1978)
    Koornwinder, T.H.: The addition formula for Jacobi Polynomials II. The Laplace type integral representation and the product formula. Math. Centrum Amsterdam, report TW133 (1972)
    Laurent, M.: Équations exponentielles-polynômes et suites récurrentes linéaires. II. J. Number Theory 31(1), 24–53 (1989)
    Light, W.A., Cheney, E.W.: Interpolation by periodic radial basis functions. J. Math. Anal. Appl. 168(1), 111–130 (1992)
    Massa, E., Peron, A.P., Porcu, E.: Positive definite functions on complex spheres and their walks through dimensions. SIGMA Symm. Integrab. Geom. Methods Appl. 13, 088 (2017). arXiv:1704.01237
    Menegatto, V.A.: Strict positive definiteness on spheres. Analysis (Munich) 19(3), 217–233 (1999)
    Menegatto, V.A., Oliveira, C.P., Peron, A.P.: Strictly positive definite kernels on subsets of the complex plane. Comput. Math. Appl. 51(8), 1233–1250 (2006)
    Menegatto, V.A., Peron, A.P.: A complex approach to strict positive definiteness on spheres. Integral Transforms Spec. Funct. 11(4), 377–396 (2001)
    Menegatto, V.A., Peron, A.P.: Positive definite kernels on complex spheres. J. Math. Anal. Appl. 254(1), 219–232 (2001)
    Musin, O.R.: Multivariate positive definite functions on spheres. In: Discrete Geometry and Algebraic Combinatorics, vol. 625. Contemp. Math., Amer. Math. Soc., Providence, RI, pp. 177–190 (2014)
    Pinkus, A.: Strictly Hermitian positive definite functions. J. Anal. Math. 94, 293–318 (2004)
    Porcu, E., Bevilacqua, M., Genton, M.G.: Spatio-temporal covariance and cross-covariance functions of the great circle distance on a sphere. J. Am. Stat. Assoc. 111(514), 888–898 (2016)
    Ramos-López, D., Sánchez-Granero, M.A., Fernández-Martínez, M., Martínez-Finkelshtein, A.: Optimal sampling patterns for Zernike polynomials. Appl. Math. Comput. 274, 247–257 (2016)
    Schoenberg, I.J.: Positive definite functions on spheres. Duke Math. J. 9, 96–108 (1942)
    Szegö, G.: Orthogonal polynomials. American Mathematical Society Colloquium Publications, vol. 23. Revised ed. American Mathematical Society, Providence, RI (1959)
    Torre, A.: Generalized Zernike or disc polynomials: an application in quantum optics. J. Comput. Appl. Math. 222(2), 622–644 (2008)
    Wünsche, A.: Generalized Zernike or disc polynomials. J. Comput. Appl. Math. 174(1), 135–163 (2005)
    Xu, Y., Cheney, E.W.: Strictly positive definite functions on spheres. Proc. Am. Math. Soc. 116(4), 977–981 (1992)
    Yaglom, A.M.: Correlation Theory of Stationary and Related Random Functions. Basic Results. Springer Series in Statistics, vol. I. Springer, New York (1987)