Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Exogenous glutamine impairs neutrophils migration into infections sites elicited by lipopolysaccharide by a multistep mechanism (2018)

  • Authors:
  • USP affiliated authors: MAKIYAMA, EDSON NAOTO - FCF ; FARSKY, SANDRA HELENA POLISELLI - FCF ; GARCIA, PRIMAVERA BORELLI - FCF ; FOCK, RICARDO AMBROSIO - FCF
  • USP Schools: FCF; FCF; FCF; FCF
  • DOI: 10.1007/s00726-018-2679-3
  • Subjects: INFLAMAÇÃO; GLUTAMINA; NEUTRÓFILOS
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
    • Publisher place: Wien
    • Date published: 2018
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s00726-018-2679-3 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      SANTOS, Andressa Cristina Antunes; FARSKY, Sandra Helena Poliselli; BORELLI, Primavera; et al. Exogenous glutamine impairs neutrophils migration into infections sites elicited by lipopolysaccharide by a multistep mechanism. Amino Acids, Wien, 2018. Disponível em: < http://dx.doi.org/10.1007/s00726-018-2679-3 > DOI: 10.1007/s00726-018-2679-3.
    • APA

      Santos, A. C. A., Farsky, S. H. P., Borelli, P., Fock, R. A., Hebeba, C. B., Hastreiter, A. A., et al. (2018). Exogenous glutamine impairs neutrophils migration into infections sites elicited by lipopolysaccharide by a multistep mechanism. Amino Acids. doi:10.1007/s00726-018-2679-3
    • NLM

      Santos ACA, Farsky SHP, Borelli P, Fock RA, Hebeba CB, Hastreiter AA, Oliveira DC de, Makiyama EN. Exogenous glutamine impairs neutrophils migration into infections sites elicited by lipopolysaccharide by a multistep mechanism [Internet]. Amino Acids. 2018 ;Available from: http://dx.doi.org/10.1007/s00726-018-2679-3
    • Vancouver

      Santos ACA, Farsky SHP, Borelli P, Fock RA, Hebeba CB, Hastreiter AA, Oliveira DC de, Makiyama EN. Exogenous glutamine impairs neutrophils migration into infections sites elicited by lipopolysaccharide by a multistep mechanism [Internet]. Amino Acids. 2018 ;Available from: http://dx.doi.org/10.1007/s00726-018-2679-3

    Referências citadas na obra
    Ajuebor MN, Das AM, Virág L, Flower RJ, Szabó C, Perretti M (1999) Role of resident peritoneal macrophages and mast cells in chemokine production and neutrophil migration in acute inflammation: evidence for an inhibitory loop involving endogenous IL-10. J Immunol 162:1685–1691
    Alves-Filho JC, de Freitas A, Spiller F, Souto FO, Cunha FQ (2008) The role of neutrophils in severe sepsis. Shock 1:3–9. https://doi.org/10.1097/SHK.0b013e3181818466
    Alves-Filho JC, Freitas A, Souto FO, Spiller F, Paula-Neto H, Silva JS, Gazzinelli RT, Teixeira MM, Ferreira SH, Cunha FQ (2009) Regulation of chemokine receptor by toll-like receptor 2 is critical to neutrophil migration and resistance to polymicrobial sepsis. Proc Natl Acad Sci USA 106:4018–4023. https://doi.org/10.1073/pnas.0900196106
    Beutler B, Rietschel ET (2003) Innate immune sensing and its roots: the story of endotoxin. Nat Rev Immunol 3:169–176. https://doi.org/10.1038/nri1004
    Bongers T, Griffiths RD, McArdle A (2007) Exogenous glutamine: the clinical evidence. Crit Care Med 35:S545–S552. https://doi.org/10.1097/01.CCM.0000279193.23737.06
    Briassouli E, Briassoulis G (2012) Glutamine randomized studies in early life: the unsolved riddle of experimental and clinical studies. Clin Dev Immunol 2012:749189
    Briassouli E, Goukos D, Daikos G, Apostolou K, Routsi C, Nanas S, Briassoulis G (2014) Glutamine suppresses Hsp72 not Hsp90α and is not inducing Th1, Th2, or Th17 cytokine responses in human septic PBMCs. Nutrition 30:1185–1194. https://doi.org/10.1016/j.nut.2014.01.018
    Briassouli E, Tzanoudaki M, Goukos D, Routsi C, Nanas S, Vardas K, Apostolou K, Kanariou M, Daikos G, Briassoulis G (2015) Glutamine may repress the weak LPS and enhance the strong heat shock induction of monocyte and lymphocyte HSP72 proteins but may not modulate the HSP72 mRNA in patients with sepsis or trauma. Biomed Res Int 2015:806042. https://doi.org/10.1155/2015/806042
    Cruzat VF, Bittencourt A, Scomazzon SP, Leite JS, de Bittencourt PI, Jr Tirapegui J (2014) Oral free and dipeptide forms of glutamine supplementation attenuate oxidative stress and inflammation induced by endotoxemia. Nutrition 30:602–611. https://doi.org/10.1016/j.nut.2013.10.019
    Curi R, Lagranha CJ, Doi SQ, Sellitti DF, Procopio J, Pithon-Curi TC, Corless M, Newsholme P (2005) Molecular mechanisms of glutamine action. J Cell Physiol 204:392–401. https://doi.org/10.1002/jcp.20339
    da Silva Lima F, Rogero MM, Ramos MC, Borelli P, Fock RA (2013) Modulation of the nuclear factor-kappa B (NF-κB) signalling pathway by glutamine in peritoneal macrophages of a murine model of protein malnutrition. Eur J Nutr 52:1343–1351. https://doi.org/10.1007/s00394-012-0443-0
    De Filippo K, Dudeck A, Hasenberg M, Nye E, van Rooijen N, Hartmann K, Gunzer M, Roers A, Hogg N (2013) Mast cell and macrophage chemokines CXCL1/CXCL2 control the early stage of neutrophil recruitment during tissue inflammation. Blood 121:4930–4937. https://doi.org/10.1182/blood-2013-02-486217
    de Urbina JJO, San-Miguel B, Vidal-Casariego A, Crespo I, Sánchez DI, Mauriz JL, Culebras JM, González-Gallego J, Tuñón MJ (2017) Effects of oral glutamine on inflammatory and autophagy responses in cancer patients treated with abdominal radiotherapy: a pilot randomized trial. Int J Med Sci 14:1065–1071. https://doi.org/10.7150/ijms.20245
    Eagle H, Oyama VI, Levy M, Horton CL, Fleischman R (1956) The growth response of mammalian cells in tissue culture to l-glutamine and l-glutamic acid. J Biol Chem 218:607–616
    Eggleton P (1998) Separation of cells using free flow electrophoresis. In: Fisher D, Francis GE, Rickwood D (eds) Cell separation. A practical approach. Oxford University Press, Oxford, New York, Tokyo, pp 213–252
    Elangbam CS, Qualls CW Jr, Dahlgren RR (1997) Cell adhesion molecules—update. Vet Pathol 34:61–73. https://doi.org/10.1177/030098589703400113
    Garib R, Garla P, Torrinhas RS, Moretti AI, Machado MC, Waitzberg DL (2016) Effect of previous high glutamine infusion on inflammatory mediators and mortality in an acute pancreatitis model. Mediators Inflamm 2016:4261419. https://doi.org/10.1155/2016/4261419
    Goron A, Moinard C (2018) Amino acids and sport: a true love story? Amino Acids 50:969–980. https://doi.org/10.1007/s00726-018-2591-x
    Gunst J, Vanhorebeek I, Thiessen SE, Van den Berghe G (2018) Amino acid supplements in critically ill patients. Pharmacol Res 130:127–131. https://doi.org/10.1016/j.phrs.2017.12.007
    Holecek M (2013) Side effects of long-term glutamine supplementation. JPEN J Parenter Enteral Nutr 37:607–616. https://doi.org/10.1177/0148607112460682
    Hou YC, Chiu WC, Yeh CL, Yeh SL (2012) Glutamine modulates lipopolysaccharide-induced activation of NF-κB via the Akt/mTOR pathway in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 302:174–183. https://doi.org/10.1152/ajplung.00066.2011
    Huang C, Jacobson K, Schaller MD (2004) MAP kinases and cell migration. J Cell Sci 117:4619–4628. https://doi.org/10.1242/jcs.01481
    Hubert-Buron A, Leblond J, Jacquot A, Ducrotte P, Dechelotte P, Coeffier M (2006) Glutamine pretreatment reduces IL-8 production in human intestinal epithelial cells by limiting ikappabalpha ubiquitination. J Nutr 136:1461–1465
    Jeong SY, Im YN, Youm JY, Lee HK, Im SY (2018) l-Glutamine attenuates DSS-induced colitis via induction of MAPK phosphatase-1. Nutrients 10:288. https://doi.org/10.3390/nu10030288
    Kobayashi Y (2008) The role of chemokines in neutrophil biology. Front Biosci 13:2400–2407
    Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13:159–175. https://doi.org/10.1038/nri3399
    Kourtzelis I, Mitroulis I, von Renesse J, Hajishengallis G, Chavakis T (2017) From leukocyte recruitment to resolution of inflammation: the cardinal role of integrins. J Leukoc Biol 102:677–683. https://doi.org/10.1189/jlb.3MR0117-024R
    Lee CH, Kim HK, Kim JM, Ayush O, Im SY, Oh DK, Lee HK (2012) Glutamine suppresses airway neutrophilia by blocking cytosolic phospholipase A(2) via an induction of MAPK phosphatase-1. J Immunol 189:5139–5146. https://doi.org/10.4049/jimmunol.1201599
    Li W, Tao S, Wu Q, Wu T, Tao R, Fan J (2017) Glutamine reduces myocardial cell apoptosis in a rat model of sepsis by promoting expression of heat shock protein 90. J Surg Res 220:247–254. https://doi.org/10.1016/j.jss.2017.06.090
    Lin A, Loré K (2017) Granulocytes: new members of the antigen-presenting cell family. Front Immunol 8:1781. https://doi.org/10.3389/fimmu.2017.01781
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) Method. Methods 25:402–408
    Machesky LM, Hall A (1997) Role of actin polymerization and adhesion to extracellular matrix in Rac- and Rho-induced cytoskeletal reorganization. J Cell Biol 138:913–926
    Newsholme P (2001) Why is l-glutamine metabolism important to cells of the immune system in health, postinjury, surgery or infection? J Nutr 131:2515S–2522S. https://doi.org/10.1093/jn/131.9.2515S
    Novak F, Heyland DK, Avenell A, Drover JW, Su X (2002) Glutamine supplementation in serious illness: a systematic review of the evidence. Crit Care Med 30:2022–2029. https://doi.org/10.1097/00003246-200209000-00011
    Oudemans-van Straaten HM, van Zanten AR (2014) Glutamine supplementation in the critically ill: friend or foe? Crit Care 18:143. https://doi.org/10.1186/cc13879
    Palani K, Rahman M, Hasan Z, Zhang S, Qi Z, Jeppsson B, Thorlacius H (2012) Rho-kinase regulates adhesive and mechanical mechanisms of pulmonary recruitment of neutrophils in abdominal sepsis. Eur J Pharmacol 682(1–3):181–187. https://doi.org/10.1016/j.ejphar.2012.02.022
    Parsey MV, Kaneko D, Shenkar R, Abraham R, Abraham E (1999) Neutrophil apoptosis in the lung after hemorrhage or endotoxemia: apoptosis and migration are independent of IL-1beta. Clin Immunol 91:219–225. https://doi.org/10.1006/clim.1999.4693
    Ridley AJ (2015) Rho GTPase signalling in cell migration. Curr Opin Cell Biol 36:103–112. https://doi.org/10.1016/j.ceb.2015.08.005
    Santos AC, Correia CA, de Oliveira DC, Nogueira-Pedro A, Borelli P, Fock RA (2016) Intravenous glutamine Administration modulates TNF-α/IL-10 ratio and attenuates NFkB phosphorylation in a protein malnutrition model. Inflammation 39:1883–1891. https://doi.org/10.1007/s10753-016-0424-1
    Santos EW, Oliveira DC, Silva GB, Tsujita M, Beltran JO, Hastreiter A, Fock RA, Borelli P (2017) Hematological alterations in protein malnutrition. Nutr Rev 75:909–919. https://doi.org/10.1093/nutrit/nux041
    Scheibe R, Schade M, Grundling M, Pavlovic D, Starke K, Wendt M, Retter S, Murphy M, Suchner U, Spassov A (2009) Glutamine and alanyl-glutamine dipeptide reduce mesenteric plasma extravasation, leukocyte adhesion and tumor necrosis factor-α (TNF-α) release during experimental endotoxemia. J Physiol Pharmacol 8:19–24
    Sellmann C, Baumann A, Brandt A, Jin CJ, Nier A, Bergheim I (2017) Oral supplementation of glutamine attenuates the progression of nonalcoholic steatohepatitis in C57BL/6J mice. J Nutr 147:2041–2049. https://doi.org/10.3945/jn.117.253815
    Shu XL, Yu TT, Kang K, Zhao J (2016) Effects of glutamine on markers of intestinal inflammatory response and mucosal permeability in abdominal surgery patients: a meta-analysis. Exp Ther Med 6:3499–3506. https://doi.org/10.3892/etm.2016.3799
    Singh N, Mishra SK, Sachdev V, Sharma H, Upadhyay AD, Arora I, Saraya A (2014) Effect of oral glutamine supplementation on gut permeability and endotoxemia in patients with severe acute pancreatitis: a randomized controlled trial. Pancreas 43:867–873. https://doi.org/10.1097/MPA.0000000000000124
    Soeters PB, Grecu I (2012) Have we enough glutamine and how does it work? A clinician’s view. Ann Nutr Metab 60:17–26. https://doi.org/10.1159/000334880
    Takashima A, Yao Y (2015) Neutrophil plasticity: acquisition of phenotype and functionality of antigen-presenting cell. J Leukoc Biol 98:489–496. https://doi.org/10.1189/jlb.1MR1014-502R
    Wagner JG, Roth RA (2000) Neutrophil migration mechanisms, with an emphasis on the pulmonary vasculature. Pharmacol Rev 52:349–374
    Wilmore DW, Shabert JK (1998) Role of glutamine in immunologic responses. Nutrition 14:618–626
    Wischmeyer PE, Riehm J, Singleton KD, Ren H, Musch MW, Kahana M, Chang EB (2003) Glutamine attenuates tumor necrosis factor-alpha release and enhances heat shock protein 72 in human peripheral blood mononuclear cells. Nutrition 19:1–6
    Yuan SY, Shen Q, Rigor RR, Wu MH (2012) Neutrophil transmigration, focal adhesion kinase and endothelial barrier function. Microvasc Res 83:82–88. https://doi.org/10.1016/j.mvr.2011.06.015
    Zhang WB, Zhang HY, Zhang Q, Jiao FZ, Zhang H, Wang LW, Gong ZJ (2017) Glutamine ameliorates lipopolysaccharide-induced cardiac dysfunction by regulating the toll-like receptor 4/mitogen-activated protein kinase/nuclear factor-κB signaling pathway. Exp Ther Med 14:5825–5832. https://doi.org/10.3892/etm.2017.5324