Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Enhancing completion time prediction through attribute selection (2019)

  • Authors:
  • USP affiliated authors: FANTINATO, MARCELO - EACH ; PERES, SARAJANE MARQUES - EACH
  • USP Schools: EACH; EACH
  • DOI: 10.1007/978-3-030-15154-6_1
  • Subjects: TECNOLOGIA DA INFORMAÇÃO; MINERAÇÃO DE DADOS; NEGÓCIOS
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/978-3-030-15154-6_1 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      AMARAL, Claudio A. L.; FANTINATO, Marcelo; REIJERS, Hajo A.; PERES, Sarajane Marques. Enhancing completion time prediction through attribute selection. Lecture Notes in Business Information Processing, Heidelberg, v. 346, p. 03-23, 2019. Disponível em: < http://dx.doi.org/10.1007/978-3-030-15154-6_1 > DOI: 10.1007/978-3-030-15154-6_1.
    • APA

      Amaral, C. A. L., Fantinato, M., Reijers, H. A., & Peres, S. M. (2019). Enhancing completion time prediction through attribute selection. Lecture Notes in Business Information Processing, 346, 03-23. doi:10.1007/978-3-030-15154-6_1
    • NLM

      Amaral CAL, Fantinato M, Reijers HA, Peres SM. Enhancing completion time prediction through attribute selection [Internet]. Lecture Notes in Business Information Processing. 2019 ; 346 03-23.Available from: http://dx.doi.org/10.1007/978-3-030-15154-6_1
    • Vancouver

      Amaral CAL, Fantinato M, Reijers HA, Peres SM. Enhancing completion time prediction through attribute selection [Internet]. Lecture Notes in Business Information Processing. 2019 ; 346 03-23.Available from: http://dx.doi.org/10.1007/978-3-030-15154-6_1

    Referências citadas na obra
    de Leoni, M., van der Aalst, W.M., Dees, M.: A general process mining framework for correlating, predicting and clustering dynamic behavior based on event logs. Inf. Syst. 56, 235–257 (2016). https://doi.org/10.1016/j.is.2015.07.003
    van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhancement of Business Processes, 2nd edn. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-642-19345-3
    van der Aalst, W., Schonenberg, M., Song, M.: Time prediction based on process mining. Inf. Syst. 36(2), 450–475 (2011). https://doi.org/10.1016/j.is.2010.09.001
    Boonjing, V., Pimchangthong, D.: Data mining for positive customer reaction to advertising in social media. In: Ziemba, E. (ed.) AITM/ISM-2017. LNBIP, vol. 311, pp. 83–95. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77721-4_5
    Łobaziewicz, M.: The role of ICT solutions in the intelligent enterprise performance. In: Ziemba, E. (ed.) AITM/ISM-2016. LNBIP, vol. 277, pp. 120–136. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53076-5_7
    Pawełoszek, I.: Data mining approach to assessment of the ERP system from the vendor’s perspective. In: Ziemba, E. (ed.) Information Technology for Management. LNBIP, vol. 243, pp. 125–143. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30528-8_8
    Berti, A.: Improving process mining prediction results in processes that change over time. In: Proceedings of the 5th International Conference on Data Analytics, pp. 37–42. IARIA (2016)
    Polato, M., Sperduti, A., Burattin, A., de Leoni, M.: Data-aware remaining time prediction of business process instances. In: Proceedings of the 2014 International Joint Conference on Neural Networks, pp. 816–823. IEEE, July 2014. https://doi.org/10.1109/IJCNN.2014.6889360
    Rogge-Solti, A., Vana, L., Mendling, J.: Time series Petri net models - enrichment and prediction. In: Proceedings of the 5th International Symposium on Data-driven Process Discovery and Analysis (SIMPDA), pp. 109–123 (2015). https://doi.org/10.1007/978-3-319-53435-0_6
    Rogge-Solti, A., Weske, M.: Prediction of business process durations using non-Markovian stochastic Petri nets. Inf. Syst. 54, 1–14 (2015). https://doi.org/10.1016/j.is.2015.04.004
    Hinkka, M., Lehto, T., Heljanko, K., Jung, A.: Structural feature selection for event logs. In: Teniente, E., Weidlich, M. (eds.) BPM 2017. LNBIP, vol. 308, pp. 20–35. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74030-0_2
    Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97(1), 273–324 (1997). https://doi.org/10.1016/S0004-3702(97)00043-X
    do Amaral, C.A.L., Fantinato, M., Peres, S.M.: Attribute selection with filter and wrapper: an application on incident management process. In: Proceedings of the 15th Conference on Advanced Information Technologies for Management (AITM) in Federated Conference on Computer Science and Information Systems (FedCSIS), vol. 15, pp. 679–682 (2018). https://doi.org/10.15439/2018F126
    Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003). https://doi.org/10.1162/153244303322753616
    Blum, A.L., Langley, P.: Selection of relevant features and examples in machine learning. Artif. Intell. 97(1–2), 245–271 (1997). https://doi.org/10.1016/S0004-3702(97)00063-5
    Armstrong, J.S., Collopy, F.: Error measures for generalizing about forecasting methods: empirical comparisons. Int. J. Forecast. 8(1), 69–80 (1992). https://doi.org/10.1016/0169-2070(92)90008-W
    de Myttenaere, A., Golden, B., Grand, B.L., Rossi, F.: Mean absolute percentage error for regression models. Neurocomputing 192, 38–48 (2016). https://doi.org/10.1016/j.neucom.2015.12.114
    van der Aalst, W.M.P., Rubin, V., Verbeek, H.M.W., van Dongen, B.F., Kindler, E., Günther, C.W.: Process mining: a two-step approach to balance between underfitting and overfitting. Softw. Syst. Model. 9(1) (2008). https://doi.org/10.1007/s10270-008-0106-z
    Evermann, J., Rehse, J.R., Fettke, P.: Predicting process behaviour using deep learning. Decis. Support Syst. 100, 129–140 (2017). https://doi.org/10.1016/j.dss.2017.04.003
    Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process monitoring with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 477–492. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_30
    Richardson, J.T.E.: Eta squared and partial eta squared as measures of effect size in educational research. Educ. Res. Rev. 6(2), 135–147 (2011). https://doi.org/10.1016/j.edurev.2010.12.001
    itSMF: Global survey on IT service management. http://www.itil.co.il
    Marrone, M., Gacenga, F., Cater-Steel, A., Kolbe, L.: IT service management: a cross-national study of ITIL adoption. Commun. Assoc. Inf. Syst. 34, 49.1–49.30 (2014). https://doi.org/10.17705/1CAIS.03449