Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Canopy architecture of an agroforestry system:: initial evaluation of a waveform system (2019)

  • Authors:
  • USP affiliated authors: RIGHI, CIRO ABBUD - ESALQ
  • USP Schools: ESALQ
  • DOI: 10.1007/s10457-019-00415-2
  • Subjects: ABSORÇÃO DA LUZ; EUCALIPTO; MADEIRA; SISTEMAS AGROFLORESTAIS; RADIAÇÃO SOLAR E TERRESTRE
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s10457-019-00415-2 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      RIBEIRO, Gabriella da Silva; RIGHI, Ciro Abbud. Canopy architecture of an agroforestry system:: initial evaluation of a waveform system. Agroforestry Systems, Berlim, Springer Science and Business Media, p. 1-12, 2019. Disponível em: < https://doi.org/10.1007/s10457-019-00415-2 > DOI: 10.1007/s10457-019-00415-2.
    • APA

      Ribeiro, G. da S., & Righi, C. A. (2019). Canopy architecture of an agroforestry system:: initial evaluation of a waveform system. Agroforestry Systems, 1-12. doi:10.1007/s10457-019-00415-2
    • NLM

      Ribeiro G da S, Righi CA. Canopy architecture of an agroforestry system:: initial evaluation of a waveform system [Internet]. Agroforestry Systems. 2019 ; 1-12.Available from: https://doi.org/10.1007/s10457-019-00415-2
    • Vancouver

      Ribeiro G da S, Righi CA. Canopy architecture of an agroforestry system:: initial evaluation of a waveform system [Internet]. Agroforestry Systems. 2019 ; 1-12.Available from: https://doi.org/10.1007/s10457-019-00415-2

    Referências citadas na obra
    Bartra JKH (2016) O uso do eucalipto em sistemas silvipastoril: acúmulo de fitomassa arbórea e de pastagem. M.Sc. dissertation, University of São Paulo
    Bartra JKH, Righi CA, Bernardes MS, Nicodemo MLF (2015) Grass biomass accumulations in an agroforestry system Eucalyptus: the role of radiation. In: Abstracts of the 3rd international symposium on integrated crop-livestock systems. Brasília, DF
    Bernardes MS (1987) Fotossíntese no dossel de plantas cultivadas. In: Castro PRC, Ferreira SO, Yamada T (eds) Ecofisiologia da produção agrícola, 1st edn. Patafos Piracicaba, pp 13–48
    Bernardes MS, Pinto LFG, Righi CA (2009) Interações biofísicas em sistemas agroflorestais. In: Porro R (ed) Alternativa agroflorestal na Amazônia em transformação, 1st edn. Brasília, pp 453–476
    Binkley D, Stape JL, Bauerle L, Ryan MG (2010) Explaining growth of individual trees: light interception and efficiency of light use by Eucalyptus at four sites in Brazil. For Ecol Manag 259:1704–1713. https://doi.org/10.1016/j.foreco.2009.05.037
    Ceccon G, Sagrilo E, Fernandes FM, Machado LAZ, Staut LA Pereira MG, Backes CF, Assis PGG, Souza GA (2005) Milho safrinha em consórcio com alternativas de outono-inverno para produção de palha e grãos, em Mato Grosso do Sul. In: Seminário Nacional de Milho Safrinha (ed), 8th edn. Campinas, pp 361–366
    Couto L, Binkley D, Betters DR, Moniz CVD (1994) Intercropping eucalypts with maize in Minas Gerais, Brazil. Agrofor Syst 26:147–156. https://doi.org/10.1007/BF00707013
    Dubè F, Couto L, Silva ML, Leite HG, Garcia R, Araujo GAA (2002) A simulation model for evaluating technical and economic aspects of an industrial eucalyptus-based agroforestry systems in Minas Gerais, Brazil. Agrofor Syst 55:73–80
    Forrester DI, Bauhus J, Cowie AL (2005) On the success and failure of mixed species tree plantations: lessons learned from a model system of Eucalyptus globulus and Acacia mearnsii. For Ecol Manag 209:147–155. https://doi.org/10.1016/j.foreco.2005.01.012
    Kumar BM, Nair PKR (2011) Carbon sequestration potential of agroforestry systems: opportunities and challenges. Advances in agroforestry, 8. Springer, New York, p 307
    Leong W (1980) Canopy modification and its effects on growth and yield of Hevea brasiliensis. Pd.D. thesis, Faculty of Agricultural Sciences of Ghent, Belgium
    Lunz AMP, Franke IL (1998) Princípios gerais e planejamento de sistemas agroflorestais. Circular técnica, 22. Embrapa - CPAF/AC, Rio Branco
    Macedo RLG, Vale AB, Venturin N (2010) Eucalipto em sistemas agroflorestais. UFLA, Lavras
    Montagnini F (2000) Accumulation in above-ground biomass and soil storage of mineral nutrients in pure and mixed plantations in a humid tropical lowland. For Ecol Manag 134:257–270. https://doi.org/10.1016/S0378-1127(99)00262-5
    Nair PKR (1984) Tropical agroforestry systems and practices. In: Furtado JI, Ruddle K (eds) Tropical resources ecology and development. Chap. n.14. Wiley, Chichester
    Parrotta JA (1999) Productivity, nutrient cycling, and succession in single- and mixed-species plantations of Casuarina equisetifolia, Eucalyptus robusta, and Leucaena leucocephala in Puerto Rico. For Ecol Manag 124:45–77
    Righi CA (2009) A utilização do eucalipto em sistemas agroflorestais: produção, ambiente e inserção social. Monograph. University of São Paulo
    Righi CA (2014) The wave project—two years of a space and time experiment. In: World congress on agroforestry—trees for life: accelerating the impacts of agroforestry, 3rd edn. Delhi, pp 160–161. http://www.worldagroforestry.org/sites/default/files/DraftCongressCompendium.pdf . Accessed 14 Mar 2018
    Righi CA, Couderc V, Pereira CR, Couto HTZ (2015) Responses of Eucalyptus camaldulensis sprouts to shade: an evaluation of canopy plasticity. Expl Agric 52:346–358. https://doi.org/10.1017/S0014479715000137
    Righi CA, Couderc V, Pereira CR, Couto HTZ, Silva LD (2016) Effect of shade on biomass accumulation and partitioning for Eucalyptus camaldulensis sprouts. J Sust For 35:75–87. https://doi.org/10.1080/10549811.2015.1102072
    Righi CA, Ribeiro GS, Bernardes MS, Couto HTZ (2017) Canopy conformation for a greater solar radiation interception—a time-scale production system. In: IUFRO 125th anniversary congress 2017—interconnecting forests, science and people. Freiburg, Germany. September, 2017, p 633. http://iufro2017.com/wp-content/uploads/2017/11/IUFRO17_Abstract_Book.pdf
    Roberts J (2000) The influence of physical and physiological characteristics of vegetation on their hydrological response. Hydrol Proc 14:2885–2901
    Röhrig M, Stützel H, Alt C (1999) A three-dimensional approach to modelling light interception in heterogeneous canopies. Agron J 91:1024–1032. https://doi.org/10.2134/agronj1999.9161024x
    Shem K, Catherine M, Ong CK (2009) Gas exchange responses of Eucalyptus, C. africana and G. robusta to varying soil moisture content in semi-arid (Thika) Kenya. Agrofor Syst 75:239–249. https://doi.org/10.1007/s10457-008-9176-8
    Thornthwaite CW, Mather JR (1955) The water balance, vol 8, no 1. Drexel Institute of Technology, Laboratory of Climatology (Publications in Climatology), Centerton, NJ, 104 p
    Tsukamoto Filho AA (1999) Introdução do palmiteiro (Euterpe edulis Martius) em sistemas agroflorestais em Lavras - Minas Gerais. Dissertation, Universidade Federal de Lavras
    Zar JH (2010) Multiple comparisons. In: Biostatistical analysis, 5th edn. Biological sciences series. Pearson Prentice-Hall, Upper Saddle River, NJ, pp 226–248