Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Unraveling microbial biofilms of importance for food microbiology (2014)

  • Authors:
  • USP affiliated authors: MARTINIS, ELAINE CRISTINA PEREIRA DE - FCFRP
  • USP Schools: FCFRP
  • DOI: 10.1007/s00248-013-0347-4
  • Subjects: BIOFILMES (PREVENÇÃO E CONTROLE); MICROBIOLOGIA DE ALIMENTOS
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s00248-013-0347-4 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s00248-013-0347-4 (Fonte: Unpaywall API)

    Título do periódico: Microbial Ecology

    ISSN: 0095-3628,1432-184X



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Microbial Ecology

    ISSN: 0095-3628

    Citescore - 2017: 3.54

    SJR - 2017: 1.272

    SNIP - 2017: 1.112


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    FCFRP2683447pcd 2683447 Estantes Deslizantes
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      WINKELSTRÖTER, Lizziane Kretti; TEIXEIRA, Fernanda Barbosa dos Reis; SILVA, Eliane Pereira; ALVES, Virgínia Farias; DE MARTINIS, Elaine Cristina Pereira. Unraveling microbial biofilms of importance for food microbiology. Microbial Ecology, New York, v. 68, n. 1, p. 35-46, 2014. Disponível em: < http://dx.doi.org/10.1007/s00248-013-0347-4 > DOI: 10.1007/s00248-013-0347-4.
    • APA

      Winkelströter, L. K., Teixeira, F. B. dos R., Silva, E. P., Alves, V. F., & De Martinis, E. C. P. (2014). Unraveling microbial biofilms of importance for food microbiology. Microbial Ecology, 68( 1), 35-46. doi:10.1007/s00248-013-0347-4
    • NLM

      Winkelströter LK, Teixeira FB dos R, Silva EP, Alves VF, De Martinis ECP. Unraveling microbial biofilms of importance for food microbiology [Internet]. Microbial Ecology. 2014 ; 68( 1): 35-46.Available from: http://dx.doi.org/10.1007/s00248-013-0347-4
    • Vancouver

      Winkelströter LK, Teixeira FB dos R, Silva EP, Alves VF, De Martinis ECP. Unraveling microbial biofilms of importance for food microbiology [Internet]. Microbial Ecology. 2014 ; 68( 1): 35-46.Available from: http://dx.doi.org/10.1007/s00248-013-0347-4

    Referências citadas na obra
    Abban S, Jakobsen M, Jespersen L (2012) Attachment behavior of Echerichia coli K12 and Salmonella Typhimurium P6 on food contact surfaces for food transportation. Food Microbiol 31:139–147
    Abee T, Kovács ÁT, Kuipers OP, Van Der Veen S (2011) Biofilm formation and dispersal in Gram-positive bacteria. Curr Opin Biotechnol 22:172–179
    Abee T, Krockel L, Hill C (1995) Bacteriocins: modes of action and potentials in food preservation and control of food poisoning. Int J Food Microbiol 2:169–185
    Adam B, Baillie GS, Douglas LJ (2002) Mixed species biofilms of Candida albicans and Staphylococcus epidermidis. J Med Microbiol 51:344–349
    Alhede M, Qvortrup K, Liebrechts R, Hoiby N, Givskov M, Bjarnsholt T (2012) Combination of microscopic techniques reveals a comprehensive visual impression of biofilm structure and composition. FEMS Immunol Med Microbiol 65:335–342
    Almeida C, Azevedo NF, Santos S, Keevil CW, Vieira MJ (2011) Discriminating multi-species populations in biofilms with peptide nucleic acid fluorescence in situ hybridization (PNA FISH). PLoS ONE 6:14786
    Anderson JM, Lin Y, Gillman AN, Parks PJ, Schlievert PM, Peterson ML (2012) Alpha-toxin promotes Staphylococcus aureus mucosal biofilm formation. Front Cell Infect Microbiol 2:64–69
    Arevalos-Sánchez M, Regalado C, Martin SE, Domínguez-Domínguez J, García-Almendárez BE (2012) Effect of neutral electrolyzed water and nisin on Listeria monocytogenes biofilms, and on listeriolysin O activity. Food Control 24:116–122
    Asséré A, Oulahal N, Carpentier B (2008) Comparative evaluation of methods for counting surviving biofilm cells adhering to a polyvinyl chloride surface exposed to chlorine or drying. J Appl Microbiol 104:1692–1702
    Auger S, Ramarao N, Faille C, Fouet A, Aymerich S, Gohar M (2009) Biofilm formation and cell surface properties among pathogenic and nonpathogenic strains of the Bacillus cereus group. Appl Environ Microbiol 75:6616–6618
    Augustin M, Ali-Vehmas T, Atroshi F (2004) Assessment of enzymatic cleaning agents and disinfectants against bacterial biofilms. J Pharm Sci 18:55–64
    Baird FJ, Wadsworth MP, Hill JE (2012) Evaluation and optimization of multiple fluorophore analysis of a Pseudomonas aeruginosa biofilm. J Microbiol Methods 90:192–196
    Ball KD, Trevors JT (2002) Bacterial genomics: the use of DNA microarrays and bacterial artificial chromosomes. J Microbiol Methods 49:275–284
    Barbosa I, Garcia S, Barbier-Chassefière V, Caruelle JP, Martelly I, Papy-García D (2003) Improved and simple micro assay for sulfated glycosaminoglycans quantification in biological extracts and its use in skin and muscle tissue studies. Glycobiology 13:647–653
    Barken KB, Pamp SJ, Yang L, Gjermansen M, Bertrand JJ, Klausen M, Givskov M, Whitchurch CB, Engel JN, Tolker-Nielsen T (2008) Roles of type IV pili, flagellum-mediated motility and extracellular DNA in the formation of mature multicellular structures in Pseudomonas aeruginosa biofilms. Environ Microbiol 10:2331–2343
    Benoit MR, Conant CG, Ionescu-Zanetti C, Schwartz M, Matin A (2010) New device for high-throughput viability screening of flow biofilms. Appl Environ Microbiol 76:4136–4142
    Berk V, Fong JCN, Dempsey GT, Develioglu ON, Zhuang X, Liphardt J, Yildiz FH, Chu S (2012) Molecular architecture and assembly principles of Vibrio cholera biofilms. Science 337:236–239
    Beyenal H, Donovan C, Lewandowski Z, Harkin G (2004) Three-dimensional biofilm structure quantification. Journal of Microbiological Method 59:395–413
    Biswas R, Agarwa RK, Bhilegaonkar KN, Kumar A, Nambiar P, Rawat S, Singh M (2010) Cloning and sequencing of biofilm-associated protein (bapA) gene and its occurrence in different serotypes of Salmonella. Lett Appl Microbiol 52:138–143
    Bodur T, Cagri-Mehmetoglu A (2012) Removal of Listeria monocytogenes, Staphylococcus aureus and Escherichia coli O157:H7 biofilms on stainless steel using scallop shell powder. Food Control 25:1–9
    Boles BR, Thoendel M, Roth AJ, Horswill AR (2010) Identification of genes involved in polysaccharide-independent Staphylococcus aureus biofilm formation. PLoS ONE 5:e10146
    Boulos L, Prévost M, Barbeau B, Coallier J, Desjardins R (1999) LIVE/DEAD® BacLightTM: application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. J Microbiol Methods 37:77–86
    Bredholt S (1999) Microbial methods for assessment of cleaning and disinfection of food-processing surfaces cleaned in a low-pressure system. Eur Food Res Technol 209:145–152
    Bremer PJ, Monk I, Osborne CM (2001) Survival of Listeria monocytogenes attached to stainless steel surfaces in the presence or absence of Flavobacterium spp. J Food Prot 64:1369–1376
    Bridier A, Dubois-Brissonnet F, Boubetra A, Thomas V, Briandet R (2010) The biofilm architecture of sixty opportunistic pathogens deciphered using a high throughput CLSM method. J Microbiol Methods 82:64–70
    Brooks JD, Flint SH (2008) Biofilms in the food industry: problems and potential solutions. Int J Food Sci Technol 43:2163–2176
    Bryers JD (1993) Bacterial biofilms. Curr Opin Biotechnol 4:197–204
    Burton E, Yakandawla N, LoVetri K, Madhyastha MS (2007) A microplate spectrofluorometric assay for bacterial biofilms. J Ind Microbiol Biotechnol 34:1–4
    Carpentier B, Cerf P (2011) Persistence of Listeria monocytogenes in food industry equipment and premises. Int J Food Microbiol 145:1–8
    Carpentier B, Chassaing D (2004) Interactions in biofilms between Listeria monocytogenes and resident microorganisms from food industry premises. Int J Food Microbiol 97:111–122
    Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A (1999) The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 37:1771–1776
    Chaturongkasumrit Y, Takahashi H, Keeratipibul S, Kuda T, Kimura B (2011) The effect of polyesterurethane belt surface roughness on Listeria monocytogenes biofilm formation and its cleaning efficiency. Food Control 22:1893–1899
    Chavant P, Gaillard-Martinie B, Talon R, Hébraud M, Bernardi T (2007) A new device for rapid evaluation of biofilm formation potential by bacteria. J Microbiol Methods 68:605–612
    Chavant P, Martinie B, Meylheuc T, Bellon-Fontaine MN, Hebraud M (2002) L. monocytogenes LO28: surface physicochemical properties and ability to form biofilms at different temperatures and growth phases. Applied Environmental Microbiology 68:728–737
    Chen MY, Lee DJ, Tay JH, Show KY (2007) Staining of extracellular polymeric substances and cells in bioaggregates. Appl Microbiol Biotechnol 75:467–474
    Cookson AL, Cooley WA, Woodward MJ (2002) The role of type 1 and curli fimbriae of Shiga toxin-producing Escherichia coli in adherence to abiotic surfaces. International Journal of Medical Microbiology 292:195–205
    Costerton JW, Lewandowski Z, Caldwell D, Korber DR, Lappinscott HM (1995) Microbial biofilms. Annual Review Microbiology 49:711–745
    Cowan SE, Gilbert E, Khlebnikov A, Keasling JD (2000) Dual labeling with green fluorescent proteins for confocal microscopy. Appl Environ Microbiol 66:413–418
    Das T, Sharma PK, Busscher HJ, van der Mei HC, Krom BP (2010) Role of extracellular DNA in initial bacterial adhesion and surface aggregation. Appl Environ Microbiol 76:3405–3408
    Decker E-M, Dietrich I, Klein C, von Ohle C (2011) Dynamic production of soluble extracellular polysaccharides by Streptococcus mutans. International Journal of Dentistry 46:1–6
    Demirci A, Pometto AL, Ho KL (1997) Ethanol production by Saccharomyces cerevisiae in biofilm reactors. J Ind Microbiol Biotechnol 4:299–304
    Díaz C, Schilardi PL, Salvarezza RC, Lorenzo F, de Mele M (2011) Have flagella a preferred orientation during early stages of biofilm formation?: AFM study using patterned substrates. Colloids Surf B: Biointerfaces 82:536–542
    Donlan RM (2009) Preventing biofilms of clinically relevant organisms using bacteriophage. Trends Microbiol 17:66–72
    Dourou D, Beauchamp CS, Yoon Y, Geornaras I, Belk KE, Smith GC, Nychas G-JE, Sofos JN (2011) Attachment and biofilm formation by Escherichia coli O157:H7 at different temperatures, on various food-contact surfaces encountered in beef processing. Int J Food Microbiol 149:262–268
    Dufrêne YF (2003) Recent progress in the application of atomic force microscopy imaging and force spectroscopy to microbiology. Curr Opin Microbiol 6:317–323
    Duguid PJ, Anderson ES, Campbell I (1966) Fimbriae and adhesive properties in salmonellae. The Journal of Pathology and Bacteriology 92:107–137
    Elhariry HM (2011) Attachment strength and biofilm forming ability of Bacillus cereus on green-leafy vegetables: cabbage and lettuce. Food Microbiol 28:1266–1274
    Feng L, Wu Z, Yu X (2013) Quorum sensing in water and wastewater treatment biofilms. J Environ Biol 34:437–444
    Flemming HC, Wingender J (2010) The biofilm matrix. Nature Reviews 8:623–633
    Flint S (2006) A rapid, two-hour method for the enumeration of total viable bacteria in samples from commercial milk powder and whey protein concentrate powder manufacturing plants. Int Dairy J 16:379–384
    Furukawa S, Akiyoshi Y, O'Toole GA, Ogihara H, Morinaga Y (2010) Sugar fatty acid esters inhibit biofilm formation by food-borne pathogenic bacteria. Int J Food Microbiol 138:176–180
    Gabrielson J, Hart M, Jarelöv A, Kühn I, McKenzie D, Möllby R (2002) Evaluation of redox indicators and the use of digital scanners and spectrophotometer for quantification of microbial growth in microplates. J Microbiol Methods 50:63–73
    Gamarra NN, Villena GK, Gutiérrez-Correa M (2010) Cellulase production by Aspergillus niger in biofilm, solid-state, and submerged fermentations. Appl Microbiol Biotechnol 87:545–551
    Gandhi M, Chikindas ML (2007) Listeria: a foodborne pathogen that knows how to survive. Int J Food Microbiol 113:1–15
    García-Almendárez BE, Cann IKO, Martin SE, Guerrero-Legarreta I, Regalado C (2008) Effect of Lactococcus lactis UQ2 and its bacteriocin on Listeria monocytogenes biofilms. Food Control 19:670–680
    Garcias KS, McKillip J (2004) A review of conventional detection and enumeration methods for pathogenic bacteria in food. Can J Microbiol 50:883–890
    Gomes MZV, Nitschke M (2012) Evaluation of rhamnolipid and surfactin to reduce the adhesion and remove biofilms of individual and mixed cultures of food pathogenic bacteria. Food Control 25:441–447
    Gómez D, Ariño A, Carramiñana JJ, Rota C, Yangüela J (2012) Sponge versus mini-roller for the surface microbiological control f Listeria monocytogenes, total aerobic mesophiles and Enterobacteriaceae in the meat industry. Food Control 27:242–247
    Griffiths MW (1993) Applications of bioluminescence in the dairy industry. J Dairy Sci 76:3118–3125
    Guilbaud M, Coppet P, Bourion F, Rachman C, Prévost H, Dousset X (2005) Quantitative detection of Listeria monocytogenes in biofilms by Real-Time PCR. Appl Environ Microbiol 71:2190–2194
    Habimana O, Moretro T, Langsrud S, Vestby LK, Nesse LL, Heir E (2010) Micro ecosystems from feed industry surfaces: a survival and biofilm study of Salmonella versus host resident flora stains. BMC Vet Res 6:1–10
    Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nature Review in Microbiology 2:95–108
    Hall-Stoodley L, Stoodley P (2005) Biofilm formation and dispersal and the transmission of human pathogens. TRENDS in Microbiology 13:7–10
    Hancock V, Witsø IL, Klemm P (2011) Biofilm formation as a function of adhesin, growth medium, substratum and strain type. International Journal of Medical Microbiology 301:570–576
    Hannig C, Follo M, Hellwig E, Al-Ahmad A (2010) Visualization of adherent micro-organisms using different techniques. J Med Microbiol 59:1–7
    Harmsen M, Lappann M, Knøchel S, Molin S (2010) Role of extracellular DNA during biofilm formation by Listeria monocytogenes. Appl Environ Microbiol 76:2271–2279
    Harmsen M, Yang L, Pamp SJ, Tolker-Nielsen T (2010) An update on Pseudomonas aeruginosa biofilm formation, tolerance, and dispersal. EMS Immunol Med Microbiol 59:253–268
    Harrison JJ (2006) The use of microscopy and three-dimensional visualization to evaluate the structure of microbial biofilms cultivated in the Calgary Biofilm Device. Biological Procedures Online 8:194–215
    Harrison JJ, Turner RJ, Marques LLR, Ceri H (2005) Biofilms. Am Sci 93:508–515
    Hartmann I, Carranza P, Lehner A, Stephan R, Eberl L, Riedel K (2010) Genes involved in Cronobacter sakazakii biofilm formation. Appl Environ Microbiol 76:2251–2261
    Harvey J, Keenan KP, Gilmour A (2007) Assessing biofilm formation by Listeria monocytogenes strains. Food Microbiol 24:380–392
    Hefford MA (2005) Proteomic and microscopic analysis of biofilms formed by Listeria monocytogenes 568. Can J Microbiol 51:197–208
    Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35:322–332
    Honraet K, Goetghebeur E, Nelis HJ (2005) Comparison of three assays for the quantification of Candida biomass in suspension and CDC reactor grown biofilms. J Microbiol Methods 63:287–295
    Hou S, Liu Z, Young AW, Mark SL, Kallenbach NR, Ren D (2010) Effects of Trp- and Arg-containing antimicrobial-peptide structure on inhibition of Escherichia coli planktonic growth and biofilm formation. Appl Environ Microbiol 76:1967–1974
    Huang Y, Shi C, Yu S, Li K, Shi X (2012) A putative MerR family regulator involved in biofilm formation in Listeria monocytogenes 4b G. Foodborne Pathogens and Disease 9:767–772
    Jones SE, Versalovic J (2009) Probiotic Lactobacillus reuteri biofilms produce antimicrobial and anti-inflammatory factors. BMC Microbiol 9:1–9
    Jordan SJ, Perni S, Glenn S, Fernandes I, Barbosa M, Sol M, Tenreiro RP, Chambel L, Barata B, Zilhao B, Aldsworth TG, Adrião A, Faleiro ML, Shama G, Andrew PW (2008) Listeria monocytogenes biofilm-associated protein (BapL) may contribute to surface attachment of L. monocytogenes but is absent from many field isolates. Appl Environ Microbiol 74:5451–5456
    Joshua GWP, Guthrie-Irons C, Karlyshev AV, Wren BW (2006) Biofilm formation in Campylobacter jejuni. Microbiology 152:387–396
    Kaplan JB (2010) Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses. J Dent Res 89:205–218
    Karatan E, Watnick P (2009) Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 73:310–347
    Kim H, Ryu J-H, Beuchat LR (2006) Attachment of and biofilm formation by Enterobacter sakazakii on stainless steel and enteral feeding tubes. Appl Environ Microbiol 72:5846–5856
    Kim S-H, Wei C-I (2007) Biofilm formation by multidrug-resistant Salmonella enterica serotype Typhimurium phage type DT104 and other pathogens. J Food Prot 70:22–29
    Kim Y, Lee JW, Kang S-G, Oh S, Griffiths MW (2012) Bifidobacterium spp. influences the production of autoinducer-2 and biofilm formation by Escherichia coli O157:H7. Anaerobe 18:539–545
    Kirov SM (2007) Biofilm differentiation and dispersal in mucoid Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Microbiology 153:3264–3274
    Klausen M (2003) Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 48:1511–1524
    Kubota H, Senda S, Tokuda H, Uchiyama H, Nomura N (2009) Stress resistance of biofilm and planktonic Lactobacillus plantarum subsp. plantarum JCM 1149. Food Microbiol 26:592–597
    Kumar CG, Anand SK (1998) Significance of microbial biofilms in food industry: a review. Int J Food Microbiol 42:9–27
    Laird K, Armitage D, Phillips C (2012) Reduction of surface contamination and biofilms of Enterococcus sp. and Staphylococcus aureus using a citrus-based vapour. J Hosp Infect 80:61–66
    Lauderdale KJ, Boles BR, Cheung AL, Horswill AR (2009) Interconnections between sigma β, agr, and proteolytic activity in Staphylococcus aureus biofilm maturation. Infect Immun 77:1623–1635
    Lawrence JR (2003) Scanning transmission X-ray, laser scanning, and transmission electron microscopy mapping of the exopolymeric matrix of microbial biofilms. Appl Environ Microbiol 69:5543–5554
    Lawrence JR, Korber DR, Hoyle BD, Costerton JW, Caldwell DE (1991) Optical sectioning of microbial biofilms. J Bacteriol 173:6558–6567
    Lazar V (2011) Quorum sensing in biofilms – how to destroy the bacterial citadels or their cohesion/power? Anaerobe 17:280–285
    Lebeer S, Verhoeven TLA, Vélez MP, Vanderleyden J, De Keersmaecker SC J (2007) Impact of environmental and genetic factors on biofilm formation by the probiotic strain Lactobacillus rhamnosus GG. Appl Environ Microbiol 73:6768–6775
    Lee Wong AC (1998) Biofilms in food processing environments. J Dairy Sci 81:2765–2770
    Lehner A, Riedel K, Eberl L, Breeuwer P, Diep B, Stephan R (2005) Biofilm formation, extracellular polysaccharide production, and cell-to-cell signaling in various Enterobacter sakazakii strains: aspects promoting environmental persistence. J Food Prot 68:2287–2294
    Lemon KP, Higgins DE, Kolter R (2007) Flagellar motility is critical for Listeria monocytogenes biofilm formation. J Bacteriol 189:4418–4424
    Lenz AP, Williamson KS, Pitts B, Stewart PS, Franklin MJ (2008) Localized gene expression in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 74:4463–4471
    Li X, Yan Z, Xu J (2003) Quantitative variation of biofilms among strains in natural populations of Candida albicans. Microbiology 149:353–362
    Lindsay D, von Holy A (1997) Evaluation of dislodging methods for laboratory-grown bacterial biofilms. Food Microbiol 14:383–390
    Lindsay D, von Holy A (2006) Bacterial biofilms within the clinical setting: what healthcare professionals should know. J Hosp Infect 64:313–325
    Lourenço A, Rego F, Brito L, Frank J (2012) Evaluation of methods to assesss the biofilm-forming ability of Listeria monocytogenes. J Food Prot 75980:1411–1417
    Lucchini S, Thompson A, Hinton JCD (2001) Microarrays for microbiologists. Microbiology 147:1403–1414
    Luppens SBI, Reij MW, van der Heijden RWL, Rombouts FM, Abee T (2002) Development of a standard test to assess the resistance of Staphylococcus aureus biofilm cells to disinfectants. Appl Environ Microbiol 68:4194–4200
    Ma H, Bryers JD (2010) Non-invasive method to quantify local bacterial concentrations in a mixed culture biofilm. J Ind Microbiol Biotechnol 37:1081–1089
    Ma L, Conover M, Lu H, Parsek MR, Bayles K, Wozniak DJ (2009) Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog 5:e1000354
    MacDonald R, Brözel VS (2000) Community analysis of bacterial biofilms in a simulated recirculating cooling-water system by fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes. Water Res 34:2439–2446
    Maeyama R, Mizunoe Y, Anderson JM, Tanaka M, Matsuda T (2004) Confocal imaging of biofilm formation process using fluoroprobed Escherichia coli and fluoro-stained exopolysaccharide. Journal of Biomedical Materials Research Part A 70A:274–282
    Mafu AA, Pitre M, Sirois S (2009) Real-Time PCR as a tool for detection of pathogenic bacteria on contaminated food contact surfaces by using a single enrichment medium. J Food Prot 72:1310–1314
    Malic S, Hill KE, Hayes A, Percival SL, Thomas DW, Williams DW (2009) Detection and identification of specific bacteria in wound biofilms using peptide nucleic acid fluorescent in situ hybridization (PNA FISH). Microbiology 155:2603–2611
    Mann EE, Wozniak DJ (2012) Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiol Rev 36:893–916
    Mariani C, Oulahal N, Chamba JF, Dubois-Brissonnet F, Notz E, Briandet R (2011) Inhibition of Listeria monocytogenes by resident biofilms present on wooden shelves used for cheese ripening. Food Control 22:1357–1362
    Marsh EJ, Luo H, Wang H (2003) A three-tiered approach to differentiate Listeria monocytogenes biofilm-forming abilities. FEMS Microbiol Lett 228:203–210
    May T, Okabe S (2008) Escherichia coli harboring a natural IncF conjugative F plasmid develops complex mature biofilms by stimulating synthesis of colonic acid and curli. J Bacteriol 190:7479–7490
    McDougald D, Rice SA, Barraud N, Steinberg PD, Kjellberg S (2012) Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nature Reviews 10:39–50
    Meira QGS, de Medeiros BI, Alves Aguiar Athayde AJ, de Siqueira-Júnior JP, De Souza EL (2012) Influence of temperature and surface kind on biofilm formation by Staphylococcus aureus from food-contact surfaces and sensitivity to sanitizers. Food Control 25:469–475
    Mendonça RCS, Morelli AMF, Pereira JAM, de Carvalho MM, de Souza NL (2012) Prediction of Escherichia coli O157:H7 adhesion and potential to form biofilm under experimental conditions. Food Control 23:389–396
    Meyer B (2003) Approaches to prevention, removal and killing of biofilms. International Biodeterioration & Biodegradation 51:249–253
    Midelet G, Carpentier B (2002) Transfer of microorganisms, including Listeria monocytogenes, from various materials to beef. Appl Environ Microbiol 68:4015–4024
    Midelet G, Carpentier B (2004) Impact of cleaning and disinfection agents on biofilm structure and on microbial transfer to a solid model food. J Appl Microbiol 97:262–270
    Miettinen MK, Björkroth KJ, Korkeala HJ (1999) Characterization of Listeria monocytogenes from an ice cream plant by serotyping and pulsed-field gel electrophoresis. Int J Food Microbiol 46:187–192
    Moltz AG, Martin SE (2005) Formation of biofilms by Listeria monocytogenes under various growth conditions. J Food Prot 68:92–97
    Monds RD, O’Toole GA (2009) The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol 17:73–87
    Moons P, Michiels CW, Aertsen A (2009) Bacterial interactions in biofilms. Crit Rev Microbiol 35:157–168
    Morikawa M (2006) Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species. J Biosci Bioeng 1:1–8
    Nancharaiah YV, Venugopalan VP, Wuertz S, Wilderer PA, Hausner M (2005) Compatibility of the green fluorescent protein and a general nucleic acid stain for quantitative description of a Pseudomonas putida biofilm. J Microbiol Methods 60:179–187
    Neu TR, Swerhone GDW, Lawrence JR (2001) Assessment of lectin-binding analysis for in situ detection of glycoconjugates in biofilm systems. Microbiology 147:299–313
    Nguyen HDN, Yuk H-G (2013) Changes in resistance of Salmonella Typhimurium biofilms formed under various conditions to industrial sanitizers. Food Control 29:236–240
    Nilsson RE, Ross T, Bowman JP (2011) Variability in biofilm production by Listeria monocytogenes correlated to strain origin and growth conditions. Int J Food Microbiol 150:14–24
    Nocker A, Cheung CY, Camper AK (2006) Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. J Microbiol Methods 67:310–320
    Nogva HK, Dromtorp SM, Nissen H, Rudi K (2003) Ethidium monoazide for DNA-based differentiation of viable and dead bacteria by 5′-nuclease PCR. BioTechniques 34:804–813
    O’Brien J, Wilson I, Orton T, Pognan F (2000) Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem 267:5421–5426
    Oliveira R, Azeredo J, Teixeira P.: The importance of physicochemical properties in biofilm formation and activity. In: Wuertz, S., Bishop, P. L., Wilderer, P. A. Biofilms in wastewater treatment: an interdisciplinary approach 211–231. London: IWA Publishing, (2003)
    Orgaz B, Lobete MM, Puga CH, San Jose C (2011) Effectiveness of chitosan against mature biofilms formed by food related bacteria. Int J Mol Sci 12:817–828
    Otto M (2008) Staphylococcal biofilms. Curr Top Microbiol Immunol 322:207–228
    Oulahal-Lagsir N, Martial-Gros A, Boistier E, Blum LJ, Bonneau M (2000) The development of an ultrasonic apparatus for the non-invasive and repeatable removal of fouling in food processing equipment. Lett Appl Microbiol 30:47–52
    Oulahal-Lagsir N, Martial-Gros A, Bonneau M, Blum LJ (2000) Ultrasonic methodology coupled to ATP bioluminescence for the non-invasive detection of fouling in food processing equipment – validation and application to a dairy factory. J Appl Microbiol 89:433–441
    Pagedar A, Singh J (2012) Influence of physiological cell stages on biofilm formation by Bacillus cereus of dairy origin. Int Dairy J 23:30–35
    Pamp SJ, Sternberg C, Tolker-Nielsen T (2009) Insight into the microbial multicellular lifestyle via flow-cell technology and confocal microscopy. Cytometry 75A:90–103
    Pan Y, Breidt F Jr (2007) Enumeration of viable Listeria monocytogenes cells by Real-Time PCR with propidium monoazide and ethidium monoazide in the presence of dead cells. Appl Environ Microbiol 73:8028–8031
    Park SH, Cheon H-L, Park K-H, Chung M-S, Choi SH, Ryu S, Kang D-H (2012) Inactivation of biofilm cells of foodborne pathogen by aerosolized sanitizers. Int J Food Microbiol 154:130–134
    Peeters E, Nelis HJ, Coenye T (2008) Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J Microbiol Methods 72:157–165
    Pérez-Osorio AC, Franklin MJ (2008) qRT-PCR of microbial biofilms. Cold Spring Harbor Protocols 3:1–8
    Periasamy S, Joo H-S, Duong AC, Bach T-H L, Tan VY, Chatteriee SS, Cheung GYC, Otto M (2012) How Staphylococcus aureus biofilms develop their characteristic structure. PNAS 109:1281–1286
    Perrin C (2009) Nickel promotes biofilm formation by Escherichia coli K-12 strains that produce curli. Appl Environ Microbiol 75:1723–1733
    Pettit RK, Weber CA, Pettit GR (2009) Application of a high throughput Alamar blue biofilm susceptibility assay to Staphylococcus aureus biofilms. Ann Clin Microbiol Antimicrob 8:1–7
    Pires D, Sillankorva S, Faustino A, Azeredo J (2011) Use of newly isolated phages for control of Pseudomonas aeruginosa PAO1 and ATCC 10145 biofilms. Res Microbiol 162:798–806
    Poimenidou S, Belessi CA, Giaouris ED, Gounadaki AS, Nychas GJE, Skandamis PN (2009) Listeria monocytogenes attachment to and detachment from stainless steel surfaces in a simulated dairy processing environment. Appl Environ Microbiol 75:7182–7188
    Ren D, Bedzyk LA, Thomas SM, Ye RW, Wood TK (2004) Gene expression in Escherichia coli biofilms. Appl Microbiol Biotechnol 64:515–524
    Renner LD, Weibel DB (2011) Physicochemical regulation of biofilm formation. MRS Bull 36:347–355
    Rieu A, Briandet R, Habimana O, Garmyn D, Guzzo J, Piveteau P (2008) Listeria monocytogenes EGD-e biofilms: no mushrooms but a network of knitted chains. Appl Environ Microbiol 74:4491–4497
    Rode TM, Langsrud S, Holck A, Møretrø T (2007) Different patterns of biofilm formation in Staphylococcus aureus under food-related stress conditions. Int J Food Microbiol 116:372–383
    Saha R, Donofrio RS, Goeres DM, Bagley ST (2012) Rapid detection of rRNA group I pseudomonads in contaminated metalworking fluids and biofilm formation by fluorescent in situ hybridization. Appl Microbiol Biotechnol 94:799–808
    Sauer K, Rickard AH, Davies DG (2007) Biofilms and biocomplexity. Microbe 2:347–353
    Schleheck D, Barraud N, Klebensberger J, Webb JS, McDougald D, Rice SA, Kjelleberg S (2009) Pseudomonas aeruginosa PAO1 preferentially grows as aggregates in liquid batch cultures and disperses upon starvation. PLoS ONE 4:e5513
    Seper A, Fengler VHI, Roier S, Wolinski H, Kohlwein SD, Bishop AL, Camilli A, Reidl J, Schild S (2011) Extracellular nucleases and extracellular DNA play important roles in Vibrio cholerae biofilm formation. Mol Microbiol 82:1015–1037
    Shakerifard P, Gancel F, Jacquesb P, Faillec C (2009) Effect of different Bacillus subtilis lipopeptides on surface hydrophobicity and adhesion of Bacillus cereus 98/4 spores to stainless steel and Teflon. Biofouling 25:533–541
    Sharma M, Anand SK (2002) Biofilms evaluation as an essential component of HACCP for food/dairy processing industry – a case. Food Control 13:469–477
    Silley P, Forsythe S (1996) Impedance microbiology – a rapid change for microbiologists. J Appl Bacteriol 80:233–243
    Silva S, Teixeira P, Oliveira R, Azeredo J (2008) Adhesion to and viability of Listeria monocytogenes on food contact surfaces. J Food Prot 71:1379–1385
    Simões M, Simões LC, Vieira MJ (2010) A review of current and emergent biofilm control strategies. LWT Food Sci Technol 43:573–583
    Skillman LC, Sutherland IW, Jones MV, Goulsbra A (1998) Green fluorescent protein as a novel species-specific marker in enteric dual-species biofilms. Microbiology 144:2095–2101
    Smith AW (2005) Biofilms and antibiotic therapy: is there a role for combating bacterial resistance by the use of novel drug delivery systems? Adv Drug Deliv Rev 57:1539–1550
    Sofos JN (2009) Biofilms: our constant enemies. Food Safety Magazine 38:40–41
    Sofos JN, Geornaras I (2010) Overview of current meat hygiene and safety risks and summary of recent studies on biofilms, and control of Escherichia coli O157:H7 in nonintact, and Listeria monocytogenes in ready-to-eat, meat products. Meat Sci 86:2–14
    Spiers AJ, Rainey PB (2005) The Pseudomonas fluorescens SBW25 wrinkly spreader biofilm requires attachment factor, cellulose fibre and LPS interactions to maintain strength and integrity. Microbiology 151:2829–2839
    Sriram MI, Kalishwaralal K, Deepak V, Gracerosepat R, Srisakthi K, Gurunathan S (2011) Biofilm inhibition and antimicrobial action of lipopeptide biosurfactant produced by heavy metal tolerant strain Bacillus cereus NK1. Colloids Surf B: Biointerfaces 85:74–181
    Steenackers H, Hermans K, Vanderleyden J, De Keersmaecker SCJ (2012) Salmonella biofilms: an overview on occurrence, structure, regulation and eradication. Food Res Int 45:502–531
    Stepanović S, Cirković I, Mijac V, Svabic-Vlahovic M (2003) Influence of the incubation temperature, atmosphere and dynamic conditions on biofilm formation by Salmonella spp. Food Microbiol 20:339–343
    Stepanovic S, Vukovic D, Dakic I, Savic B, Svabic-Vlahovic M (2000) A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods 40:175–179
    Stewart PS, Murga R, Srinivasan R, Beer D (1995) Biofilm structural heterogeneity visualized by three microscopic methods. Water Res 29:2006–2009
    Stier RF (2005) Beating back biofilms in food processing. Food Safety Magazine 11(1):31–34
    Tang JN, Kang MS, Chen HC, Shi XM, Zhou R, Chen J, Wu DY (2011) The staphylococcal nuclease prevents biofilm formation in Staphylococcus aureus and other biofilm-forming bacteria. Science China 54:863–869
    Teixeira P, Lima J, Azeredo J, Oliveira R (2008) Adhesion of Listeria monocytogenes to materials commonly found in domestic kitchens. Int J Food Sci Technol 43:1239–1244
    Touhami A, Jericho MH, Boyd JM, Beveridge TJ (2006) Nanoscale characterization and determination of adhesion forces of Pseudomonas aeruginosa Pili by using atomic force microscopy. J Bacteriol 188:370–377
    Trémoulet F, Duché O, Namane A, Martinie B (2002) Comparison of protein patterns of Listeria monocytogenes grown in biofilm or in planktonic mode by proteomic analysis. FEMS Microbiol Lett 210:25–31
    Unnerstad HE, Bannerman J, Bille M-L, Danielsson-Tham E, Waak W (1996) Prolonged contamination of a dairy with Listeria monocytogenes. Neth Milk Dairy J 50:493–499
    Valle J, Re SD, Henry N, Fontaine T, Balestrino D, Latour-Lambert P, Ghigo J-M (2006) Broad-spectrum biofilm inhibition by a secreted bacterial polysaccharide. PNAS 103:12558–12563
    Varga JJ, Therit B, Melville SB (2008) Type IV pili and the CcpA protein are needed for maximal biofilm formation by the gram-positive anaerobic pathogen Clostridium perfringens. Infect Immun 76:4944–4951
    Verghese B, Lok M, Wen J, Alessandria V, Chen Y, Kathariou S, Knabel S (2011) ComK prophage junction fragments as markers for Listeria monocytogenes genotypes unique to individual meat and poultry processing plants and a model for rapid niche-specific adaptation, biofilm formation and persistence. Appl Environ Microbiol 77:3279–3292
    Verran J, Packer A, Kelly P, Whitehead KA (2010) The retention of bacteria on hygienic surfaces presenting scratches of microbial dimensions. Lett Appl Microbiol 50:258–263
    Vilain S, Pretorius JM, Theron J, Brözel VS (2009) DNA as an adhesion: Bacillus cereus requires extracellular DNA to form biofilms. Appl Environ Microbiol 75:2861–2868
    Waite RD, Papakonstantinopoulou A, Littler E, Curtis MA (2005) Transcriptome analysis of Pseudomonas aeruginosa growth: comparison of gene expression in planktonic cultures and developing and mature biofilms. J Bacteriol 187:6571–6576
    Wang Q, Frye JG, McClelland M, Harshey RM (2004) Gene expression patterns during swarming in Salmonella typhimurium: gene specific to surface growth and putative new motility and pathogenicity genes. Molecula Microbiology 52:169–187
    Wang X, Preston JF III, Romeo T (2004) The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesion required for biofilm formation. J Bacteriol 186:2724–2734
    Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS (2002) Extracellular DNA required for bacterial biofilm formation. Science 295:1487
    Wijman JGE, Leeuw PPLA, Moezelaar R, Zwietering MH, Abee T (2007) Air–liquid interface biofilms of Bacillus cereus: formation, sporulation, and dispersion. Appl Environ Microbiol 73:1481–1488
    Winkelströter LK, Gomes BC, Thomaz MRS, Souza VM, De Martinis ECP (2011) Lactobacillus sakei 1 and its bacteriocin influence adhesion of Listeria monocytogenes on stainless steel surface. Food Control 22:1404–1407
    Wirtanen G, Salo S, Helander IM, Mattila-Sandholm T (2001) Microbiological methods for testing disinfectant efficiency on Pseudomonas biofilm. Colloids Surf B: Biointerfaces 20:37–50
    Wright CJ, Shah MK, Powell LC, Armstrong I (2010) Application of AFM from microbial cell to biofilm. Scanning 32:134–149
    Ye RW, Wang T, Bedzyk L, Croker KM (2001) Applications of DNA microarrays in microbial systems. J Microbiol Methods 47:257–272
    Yeom J, Lee Y, Park W (2012) Effects of non-ionic solute stresses on biofilm formation and lipopolysaccharide production in Escherichia coli O157:H7. Res Microbiol 163:258–267
    Zhu X, Liu W, Lametsch R, Aarestrup F, Shi C, She Q, Shi X, KnØchel (2011) Phenotypic, proteomic, and genomic characterization of a putative ABC-transporter permease involved in Listeria monocytogenes biofilm formation. Foodborne Pathogens and Disease 8:495–501
    Zottola EA, Sasahara KC (1994) Microbial biofilms in the food processing industry—should they be a concern? Int J Food Microbiol 23:125–148