Ver registro no DEDALUS
Exportar registro bibliográfico



Three-dimensional and stereological characterization of the human substantia nigra during aging (2015)

  • Authors:
  • USP Schools: EE
  • DOI: 10.1007/s00429-015-1108-6
  • Language: Inglês
  • Abstract: The human brain undergoes non-uniform changes during aging. The substantia nigra (SN), the source of major dopaminergic pathways in the brain, is particularly vulnerable to changes in the progression of several age-related neurodegenerative diseases. To establish normative data for high-resolution imaging, and to further clinical and anatomical studies we analyzed SNs from 15 subjects aged 50–91 cognitively normal human subjects without signs of parkinsonism. Complete brains or brainstems with substantia nigra were formalin-fixed, celloidin-mounted, serially cut and Nissl-stained. The shapes of all SNs investigated were reconstructed using fast, high-resolution computer-assisted 3D reconstruction software. We found a negative correlation between age and SN volume (p = 0.04, rho = −0.53), with great variability in neuronal numbers and density across participants. The 3D reconstructions revealed SN inter- and intra-individual variability. Furthermore, we observed that human SN is a neuronal reticulum, rather than a group of isolated neuronal islands. Caution is required when using SN volume as a surrogate for SN status in individual subjects. The use of multimodal sequences including those for fiber tracts may enhance the value of imaging as a diagnostic tool to assess SN in vivo. Further studies with a larger sample size are needed for understanding the structure–function interaction of human SN.
  • Imprenta:
  • Source:
  • Acesso online ao documento

    DOI or search this record in
    Informações sobre o DOI: 10.1007/s00429-015-1108-6 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: green
    Versões disponíveis em Acesso Aberto do: 10.1007/s00429-015-1108-6 (Fonte: Unpaywall API)

    Título do periódico: Brain Structure and Function

    ISSN: 1863-2653,1863-2661

    • Melhor URL em Acesso Aberto:

    • Outras alternativas de URLs em Acesso Aberto:

        • Página do artigo
        • Evidência: oa repository (via pmcid lookup)
        • Licença:
        • Versão: acceptedVersion
        • Tipo de hospedagem: repository

    Informações sobre o Citescore
  • Título: Brain Structure and Function

    ISSN: 1863-2653

    Citescore - 2017: 3.57

    SJR - 2017: 2.034

    SNIP - 2017: 0.986

  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    EE2761720-10FERRETTI, R. E. de L. doc 41e
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      ALHO, Ana Tereza Di Lorenzo; SUEMOTO, Claudia Kimie; POLICHISO, Livia; et al. Three-dimensional and stereological characterization of the human substantia nigra during aging. Brain structure and function, Berlin, Springer-Verlag, n. 19, p. Se 2015, 2015. DOI: 10.1007/s00429-015-1108-6.
    • APA

      Alho, A. T. D. L., Suemoto, C. K., Polichiso, L., Tampellini, E., Oliveira, K. C. de, Leite, R. E. P., et al. (2015). Three-dimensional and stereological characterization of the human substantia nigra during aging. Brain structure and function, ( 19), Se 2015. doi:10.1007/s00429-015-1108-6
    • NLM

      Alho ATDL, Suemoto CK, Polichiso L, Tampellini E, Oliveira KC de, Leite REP, Ferretti-Rebustini RE de L, Silva AV da, Nitrini R, Pasqualucci CA, Jacob Filho W, Heinsen H, Grinberg LT. Three-dimensional and stereological characterization of the human substantia nigra during aging. Brain structure and function. 2015 ;( 19): Se 2015.
    • Vancouver

      Alho ATDL, Suemoto CK, Polichiso L, Tampellini E, Oliveira KC de, Leite REP, Ferretti-Rebustini RE de L, Silva AV da, Nitrini R, Pasqualucci CA, Jacob Filho W, Heinsen H, Grinberg LT. Three-dimensional and stereological characterization of the human substantia nigra during aging. Brain structure and function. 2015 ;( 19): Se 2015.

    Referências citadas na obra
    Alladi PA, Mahadevan A, Yasha TC, Raju TR, Shankar SK, Muthane U (2009) Absence of age-related changes in nigral dopaminergic neurons of Asian Indians: relevance to lower incidence of Parkinson’s disease. Neuroscience 159:236–245
    Braak H, Braak E (1986) Nuclear configuration and neuronal types of the nucleus niger in the brain of the human adult. Hum Neurobiol 5:71–82
    Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259
    Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E (2003a) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211
    Braak H, Rüb U, Gai WP, Del Tredici K (2003b) Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm 110:517–536
    Cabello CR, Thune JJ, Pakkenberg H, Pakkenberg B (2002) Ageing of substantia nigra in humans: cell loss may be compensated by hypertrophy. Neuropathol Appl Neurobiol 28:283–291
    Chu Y, Kompoliti K, Cochran EJ, Mufson EJ, Kordower JH (2002) Age-related decreases in Nurr1 immunoreactivity in the human substantia nigra. J Comp Neurol 450:203–214
    Damier P, Hirsch EC, Agid Y, Graybiel AM (1999) The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 122(Pt 8):1437–1448
    Di Giovanni G, Di Matteo V, Esposito E (2009) Birth, life and death of dopaminergic neurons in the substantia nigra. J Neural Transm Suppl 73:1
    Dickson DW (2012) Parkinson’s disease and parkinsonism: neuropathology. Cold Spring Harb Perspect Med 2(8). doi: 10.1101/cshperspect.a009258.1
    Doraiswamy PM et al (1992) Morphometric changes of the human midbrain with normal aging: MR and stereologic findings. AJNR Am J Neuroradiol 13:383–386
    Eidelberg D, Galaburda AM (1982) Symmetry and asymmetry in the human posterior thalamus. I. Cytoarchitectonic analysis in normal persons. Arch Neurol 39:325–332
    Esiri MM (2007) Ageing and the brain. J Pathol 211(2):181–187
    Fearnley JM, Lees AJ (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114(Pt 5):2283–2301
    Ferri CP et al (2005) Global prevalence of dementia: a Delphi consensus study. Lancet 366:2112–2117
    Francois C, Percheron G, Yelnik J, Heyner S (1985) A histological atlas of the macaque (Macaca mulatta) substantia nigra in ventricular coordinates. Brain Res Bull 14:349–367
    German DC, Schlusselberg DS, Woodward DJ (1983) Three-dimensional computer reconstruction of midbrain dopaminergic neuronal populations: from mouse to man. J Neural Transm 57:243–254
    Glaser EM, Wilson PD (1998) The coefficient of error of optical fractionator population size estimates: a computer simulation comparing three estimators. J Microsc 192(2):163–171
    Grinberg LT et al (2007) Brain bank of the Brazilian aging brain study group—a milestone reached and more than 1600 collected brains. Cell Tissue Bank 8:151–162
    Grinberg LT et al (2009) The dorsal raphe nucleus shows phospho-tau neurofibrillary changes before the transentorhinal region in Alzheimer’s disease. A precocious onset? Neuropathol Appl Neurobiol 35:406–416
    Grinberg LT, Rueb U, Heinsen H (2011) Brainstem: neglected locus in neurodegenerative diseases. Front Neurol 2:42
    Gundersen HJ, Jensen EB (1987) The efficiency of systematic sampling in stereology and its prediction. J Microsc 147:229–263
    Haber SN, Behrens TE (2014) The neural network underlying incentive-based learning: implications for interpreting circuit disruptions in psychiatric disorders. Neuron 83:1019–1039
    Haber SN, Fudge JL, McFarland NR (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 20:2369–2382
    Halliday GM, McRitchie DA, Cartwright H, Pamphlett R, Hely MA, Morris JG (1996) Midbrain neuropathology in idiopathic Parkinson’s disease and diffuse Lewy body disease. J Clin Neurosci 3:52–60
    Hassler R (1937) Zur Normalanatomie der Substantia nigra. Versuch einer architektonischen Gliederung. J Psychol Neurol 48:1–55
    Hedreen JC, DeLong MR (1991) Organization of striatopallidal, striatonigral, and nigrostriatal projections in the macaque. J Comp Neurol 304:569–595
    Heinsen H, Heinsen YL (1991) Serial thick, fronze, gallocyanin stained sections of human central nervous system. J Histotechnol 14:167–173
    Heinsen H, Henn R, Eisenmenger W, Götz M, Bohl J, Bethke B, Lockemann U, Püschel K (1994) Quantitative investigations on the human entorhinal area: left–right asymmetry and age-related changes. Anat Embryol (Berl) 190(2):181–194
    Heinsen H, Arzberger T, Schmitz C (2000) Celloidin mounting (embedding without infiltration)—a new, simple and reliable method for producing serial sections of high thickness through complete human brains and its application to stereological and immunohistochemical investigations. J Chem Neuroanat 20:49–59
    Heinsen H, Arzberger T, Roggendorf W, Mitrovic T (2004) 3D reconstruction of celloidin-mounted serial sections. Acta Neuropathol 108(4):374
    Jorm AF (1994) A short form of the Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE): development and cross-validation. Psychol Med 24:145–153
    Kouri N, Whitwell JL, Josephs KA, Rademakers R, Dickson DW (2011) Corticobasal degeneration: a pathologically distinct 4R tauopathy. Nat Rev Neurol 7:263–272
    Kreczmanski P et al (2007) Volume, neuron density and total neuron number in five subcortical regions in schizophrenia. Brain 130:678–692
    Kubis N et al (2000) Preservation of midbrain catecholaminergic neurons in very old human subjects. Brain 123(Pt 2):366–373
    Lynd-Balta E, Haber SN (1994) Primate striatonigral projections: a comparison of the sensorimotor-related striatum and the ventral striatum. J Comp Neurol 345:562–578
    Lyness SA, Zarow C, Chui HC (2003) Neuron loss in key cholinergic and aminergic nuclei in Alzheimer disease: a meta-analysis. Neurobiol Aging 24:1–23
    Ma SY, Röyttä M, Rinne JO, Collan Y, Rinne UK (1995) Single section and disector counts in evaluating neuronal loss from the substantia nigra in patients with Parkinson’s disease. Neuropathol Appl Neurobiol 21:341–343
    Ma SY, Röytt M, Collan Y, Rinne JO (1999) Unbiased morphometrical measurements show loss of pigmented nigral neurones with ageing. Neuropathol Appl Neurobiol 25:394–399
    McRitchie DA, Halliday GM, Cartwright H (1995) Quantitative analysis of the variability of substantia nigra pigmented cell clusters in the human. Neuroscience 68:539–551
    Morris JC (1993) The clinical dementia rating (CDR): current version and scoring rules. Neurology 43:2412–2414
    Mouton PR (2011) Unbiased stereology: a concise guide. The John Hopkins University Press, Baltimore
    Muthane U, Yasha TC, Shankar SK (1998) Low numbers and no loss of melanized nigral neurons with increasing age in normal human brains from India. Ann Neurol 43(3):283–287
    Ogisu K et al (2013) 3D neuromelanin-sensitive magnetic resonance imaging with semi-automated volume measurement of the substantia nigra pars compacta for diagnosis of Parkinson’s disease. Neuroradiology 55:719–724
    Pakkenberg B, Møller A, Gundersen HJ, AM Dam, Pakkenberg H (1991) The absolute number of nerve cells in substantia nigra in normal subjects and in patients with Parkinson’s disease estimated with an unbiased stereological method. J Neurol Neurosurg Psychiatry 54:30–33
    Perl DP, Good PF, Bussiere T, Morrison JH, Erwin JM, Hof PR (2000) Practical approaches to stereology in the setting of aging- and disease-related brain banks. J Chem Neuroanat 20:7–19
    Pujol J, Junqué C, Vendrell P, Grau JM, Capdevila A (1992) Reduction of the substantia nigra width and motor decline in aging and Parkinson’s disease. Arch Neurol 49:1119–1122
    Rudow G, O’Brien R, Savonenko AV, Resnick SM, Zonderman AB, Pletnikova O, Marsh L, Dawson TM, Crain BJ, West MJ, Troncoso JC (2008) Morphometry of the human substantia nigra in ageing and Parkinson’s disease. Acta Neuropathol 115(4):461–470
    Schmithorst VJ, Dardzinski BJ, Holland SK (2001) Simultaneous correction of ghost and geometric distortion artifacts in EPI using a multiecho reference scan. IEEE Trans Med Imaging 20:535–539
    Schmitz C (1998) Variation of fractionator estimates and its prediction. Anat Embryol 198:371–397
    Schmitz C, Hof PR (2000) Recommendations for straightforward and rigorous methods of counting neurons based on a computer simulation approach. J Chem Neuroanat 20(1):93–114
    Schmitz C, Korr H, Heinsen H (1999a) Design-based counting techniques: the real problems (letter). Trends Neurosci 22(8):345
    Schmitz C, Rüb U, Korr H, Heinsen H (1999b) Nerve cell loss in the thalamic mediodorsal nucleus in Huntington’s disease. II. Optimization of a stereological estimation procedure. Acta Neuropathol 97:623–628
    Sohmiya M, Tanaka M, Aihara Y, Hirai S, Okamoto K (2001) Age-related structural changes in the human midbrain: an MR image study. Neurobiol Aging 22:595–601
    Tanner C, Gilley D, Goetz C (1990) A brief screening questionnaire for parkinsonism. Ann Neurol 28:267–268
    Theofilas P, Polichiso L, Wang X, Lima LC, Alho AT, Leite RE, Suemoto CK, Pasqualucci CA, Jacob Filho W, Heinsen H, Grinberg LT, Group BABS (2014) A novel approach for integrative studies on neurodegenerative diseases in human brains. J Neurosci Methods 226:171–183
    UN (2013) World population prospects: the 2012 revision, vol Volume I: comprehensive tables ST/ESA/SER.A/336. United Nations
    van Domburg PH, ten Donkelaar HJ (1991) The human substantia nigra and ventral tegmental area. A neuroanatomical study with notes on aging and aging diseases. Adv Anat Embryol Cell Biol 121:1–132
    West MJ (1993) New stereological methods for counting neurons. Neurobiol Aging 14(4):275–285
    West MJ, Ostergaard K, Andreassen OA, Finsen B (1996) Estimation of the number of somatostatin neurons in the striatum: an in situ hybridization study using the optical fractionator method. J Comp Neurol 370(1):11–22