Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

P2×7 purinergic signaling in dilated cardiomyopathy induced by auto-immunity against muscarinic M2 receptors: autoantibody levels, heart functionality and cytokine expression (2015)

  • Authors:
  • USP affiliated authors: BRANDAO, IZAIRA TINCANI - FMRP ; SILVA, CELIO LOPES - FMRP
  • USP Schools: FMRP; FMRP
  • DOI: 10.1038/srep16940
  • Subjects: MIOCARDIOPATIA CONGESTIVA; AUTOANTICORPOS
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1038/srep16940 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: hybrid
    • Licença: cc-by
    Versões disponíveis em Acesso Aberto do: 10.1038/srep16940 (Fonte: Unpaywall API)

    Título do periódico: Scientific Reports

    ISSN: 2045-2322

    • Melhor URL em Acesso Aberto:


    • Outras alternativas de URLs em Acesso Aberto:


        • Página do artigo
        • Evidência: oa journal (via doaj)
        • Licença: cc-by
        • Versão: publishedVersion
        • Tipo de hospedagem: publisher




        • Página do artigo
        • Evidência: oa repository (via pmcid lookup)
        • Licença:
        • Versão: publishedVersion
        • Tipo de hospedagem: repository


    Informações sobre o Citescore
  • Título: Scientific Reports

    ISSN: 2045-2322

    Citescore - 2017: 4.36

    SJR - 2017: 1.533

    SNIP - 2017: 1.245


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    FMRP2765480pcd^2765480^Estantes Deslizantes
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      MARTINEZ, Camila Guerra; ZAMITH-MIRANDA, Daniel; SILVA, Marcia Gracindo da; et al. P2×7 purinergic signaling in dilated cardiomyopathy induced by auto-immunity against muscarinic M2 receptors: autoantibody levels, heart functionality and cytokine expression. Scientific Reports, London, v. 5, 2015. Disponível em: < http://dx.doi.org/10.1038/srep16940 > DOI: 10.1038/srep16940.
    • APA

      Martinez, C. G., Zamith-Miranda, D., Silva, M. G. da, Ribeiro, K. C., Brandão, I. T., Silva, C. L., et al. (2015). P2×7 purinergic signaling in dilated cardiomyopathy induced by auto-immunity against muscarinic M2 receptors: autoantibody levels, heart functionality and cytokine expression. Scientific Reports, 5. doi:10.1038/srep16940
    • NLM

      Martinez CG, Zamith-Miranda D, Silva MG da, Ribeiro KC, Brandão IT, Silva CL, Diaz BL, Bellio M, Persechini PM, Kurtenbach E. P2×7 purinergic signaling in dilated cardiomyopathy induced by auto-immunity against muscarinic M2 receptors: autoantibody levels, heart functionality and cytokine expression [Internet]. Scientific Reports. 2015 ; 5Available from: http://dx.doi.org/10.1038/srep16940
    • Vancouver

      Martinez CG, Zamith-Miranda D, Silva MG da, Ribeiro KC, Brandão IT, Silva CL, Diaz BL, Bellio M, Persechini PM, Kurtenbach E. P2×7 purinergic signaling in dilated cardiomyopathy induced by auto-immunity against muscarinic M2 receptors: autoantibody levels, heart functionality and cytokine expression [Internet]. Scientific Reports. 2015 ; 5Available from: http://dx.doi.org/10.1038/srep16940

    Referências citadas na obra
    Sisakian, H. Cardiomyopathies: Evolution of pathogenesis concepts and potencial for new therapies. Worl J Cardiol 26, 478–494 (2014).
    Modesto, K. & Sengupta, P. P. Myocardial mechanics in cardiomyopathies. Prog Cardiovasc Dis 57, 111–124 (2014).
    Fu, L. X. et al. Localization of a functional autoimmune epitope on the muscarinic acetylcholine receptor-2 in patients with idiopathic dilated cardiomyopathy. J Clin Invest 91, 1964–1968 (1993).
    de Oliveira, S. F., Pedrosa, R. C., Nascimento, J. H. M., de Carvalho, A. C. C. & Masuda, M. O. Sera from chronic chagasic patients with complex cardiac arrhythmias depress electrogenesis and conduction in isolated rabbit hearts. Circulation 96, 2031–2037 (1997).
    Goin, J., Leiros, C. P., Borda, E. & Sterin-Borda, L. Interaction of human chagasic IgG with the second extracellular loop of the human heart muscarinic acetylcholine receptor: functional and pathological implications. FASEB J 11, 77–83 (1997).
    Peter, J.-C. et al. Effects on heart rate of an anti-M2 acetylcholine receptor immune response in mice. FASEB J 19, 943–949 (2005).
    Baba, A. et al. Autoantibodies against M2-muscarinic acetylcholine receptors: new upstream targets in atrial fibrillation in patients with dilated cardiomyopathy. Eur Heart J 25, 1108–1115 (2004).
    Epelman, S., Liu, P. P. & Mann, D. L. Role of innate and adaptive immune mechanisms in cardiac injury and repair. Nat Rev Immunol 15, 117–129 (2015).
    Domingues, H. S., Mues, M., Lassmann, H., Wekerle, H. & Krishnamoorthy, G. Functional and pathogenic differences of Th1 and Th17 cells in experimental autoimmune encephalomyelitis. PloS One 5, e15531 (2010).
    Luger, D. et al. Either a Th17 or a Th1 effector response can drive autoimmunity: conditions of disease induction affect dominant effector category. J Exp Med 205, 799–810 (2008).
    Damsker, J. M., Hansen, A. M. & Caspi, R. R. Th1 and Th17 cells. Ann N Y Acad Sci 1183, 211–221 (2010).
    Lee, Y. K. et al. Late developmental plasticity in the T helper 17 lineage. Immunity 30, 92–107 (2009).
    Wang, Y. et al. The Transcription Factors T-bet and Runx Are Required for the Ontogeny of Pathogenic Interferon-γ-Producing T Helper 17 Cells. Immunity 40, 355–366 (2014).
    Baldeviano, G. C. et al. Interleukin-17A is dispensable for myocarditis but essential for the progression to dilated cardiomyopathy. Circ Res 06, 1646–1655 (2010).
    Wu, L. et al. Cardiac fibroblasts mediate IL-17A–driven inflammatory dilated cardiomyopathy. J Exp Med 211, 1449–1464 (2014).
    Barin, J. G. et al. Fatal eosinophilic myocarditis develops in the absence of IFN-γ and IL-17A. J Immunol 191, 4038–4047 (2013).
    Afanasyeva, M. et al. Impaired up-regulation of CD25 on CD4+ T cells in IFN-γ knockout mice is associated with progression of myocarditis to heart failure. Proc Natl Acad Sci USA 102, 180–185 (2005).
    Nogueira, L. G. et al. Myocardial gene expression of T-bet, GATA-3, Ror-t, FoxP3, and hallmark cytokines in chronic chagas disease cardiomyopathy: an essentially unopposed T H 1-type response. Mediators Inflamm 2014, 1–9 (2014).
    Pereira, I. R. et al. A human type 5 adenovirus-based Trypanosoma cruzi therapeutic vaccine re-programs immune response and reverses chronic cardiomyopathy. PLoS Pathog 11, e1004594 (2015).
    da Matta Guedes, P. M. et al. IL-17 produced during Trypanosoma cruzi infection plays a central role in regulating parasite-induced myocarditis. PLoS Negl Trop Dis 4, e604 (2010).
    Guedes, P. M. M. et al. Deficient regulatory T cell activity and low frequency of IL-17-producing T cells correlate with the extent of cardiomyopathy in human chagas’ disease. PLoS Negl Trop Dis 6, e1630 (2012).
    Giménez, L. E. et al. DNA immunizations with M2 muscarinic and β1 adrenergic receptor coding plasmids impair cardiac function in mice. J Mol Cell Cardiol 38, 703–714 (2005).
    Lamkanfi, M. & Dixit, V. M. Mechanisms and functions of inflammasomes. Cell 157, 1013–1022 (2014).
    Burnstock, G. Purinergic signalling: pathophysiology and therapeutic potential. Keio J Med 62, 63–73 (2013).
    Rayah, A., Kanellopoulos, J. M. & Di Virgilio, F. P2 receptors and immunity. Microbes Infect 14, 1254–1262 (2012).
    Ghiringhelli, F. et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β–dependent adaptive immunity against tumors. Nat Med 15, 1170–1178 (2009).
    Pang, I. K., Ichinohe, T. & Iwasaki, A. IL-1R signaling in dendritic cells replaces pattern-recognition receptors in promoting CD8+ T cell responses to influenza A virus. Nat Immunol 14, 246–253 (2013).
    Rissiek, B., Haag, F., Boyer, O., Koch-Nolte, F. & Adriouch, S. ADP-Ribosylation of P2×7: a matter of life and death for regulatory T cells and natural killer T cells. Curr Top Microbiol Immunol 34, 107–126 (2015).
    Zempo, H. et al. A P2X7 receptor antagonist attenuates experimental autoimmune myocarditis via suppressed myocardial CD4+ T and macrophage infiltration and NADPH oxidase 2/4 expression in mice. Heart Vessels, 30, 527–533 (2014).
    Granado, M. et al. Altered expression of P2Y2 and P2×7 purinergic receptors in the isolated rat heart mediates ischemia–reperfusion injury. Vascul Pharmacol, 73, 96–103 (2015).
    Vessey, D. A., Li, L. & Kelley, M. P2×7 receptor agonists pre-and postcondition the heart against ischemia-reperfusion injury by opening pannexin-1/P2×7 channels. Am J Physiol Heart Circ Physiol 301, H881–H887 (2011).
    Mezzaroma, E. et al. The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse. Proc Natl Acad Sci 108, 19725–19730 (2011).
    Spinale, F. G. Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol Rev 87, 1285–1342 (2007).
    Fontenot, J. D., Gavin, M. A. & Rudensky, A. Y. Foxp3 programs the development and function of CD4+ CD25+ regulatory T cells. Nat Immunol 4, 330–336 (2003).
    Hori, S. Lineage stability and phenotypic plasticity of Foxp3+ regulatory T cells. Immunol Rev 259, 159–172 (2014).
    Miller, C. M. et al. The role of the P2×7 receptor in infectious diseases. PLoS Pathog 7, e1002212 (2011).
    Mutini, C. et al. Mouse dendritic cells express the P2×7 purinergic receptor: characterization and possible participation in antigen presentation. JImmunol 163, 1958 (1999).
    Nagatomo, Y. & Tang, W. W. Autoantibodies and Cardiovascular Dysfunction: Cause or Consequence? Curr Heart Fail Rep 11, 1–9 (2014).
    Barth, K. et al. Increased P2X7R expression in atrial cardiomyocytes of caveolin-1 deficient mice. Histochem Cell Biol 134, 31–38 (2010).
    Musa, H. et al. P2 purinergic receptor mRNA in rat and human sinoatrial node and other heart regions. Naunyn Schmiedebergs Arch Pharmacol 379, 541–549 (2009).
    Pelleg, A. & Belhassen, B. The Mechanism of the Negative Chronotropic and Dromotropic Actions of Adenosine 5′-triphosphate in the Heart: An Update. J Cardiovasc Pharmacol 56, 106–109 (2010).
    Hanna, E. B. & Glancy, D. L. ST-segment depression and T-wave inversion: classification, differential diagnosis, and caveats. Cleve Clin J Med 78, 404–414 (2011).
    Deten, A. et al. Norepinephrine-induced acute heart failure in transgenic mice overexpressing erythropoietin. Cardiovasc Res 61, 105–114 (2004).
    Chen, P. et al. Susceptibility to autoimmune myocarditis is associated with intrinsic differences in CD4+ T cells. Clin Exp Immunol 169, 79–88 (2012).
    Schenk, U. et al. ATP inhibits the generation and function of regulatory T cells through the activation of purinergic P2X receptors. Sci Signal 4, ra12 (2011).
    Bonelli, M. et al. CD4 CD25− Foxp3 T cells: a marker for lupus nephritis? Arthrit Res Ther 2, 1–11 (2014).
    Yang, H. et al. Are CD4+ CD25-Foxp3+ cells in untreated new-onset lupus patients regulatory T cells. Arthritis Res Ther 11, R153 (2009).
    Zelenay, S. et al. Foxp3+ CD25–CD4 T cells constitute a reservoir of committed regulatory cells that regain CD25 expression upon homeostatic expansion. Proc Natl Acad Sci USA 102, 4091–4096 (2005).
    Zóka, A. et al. Extension of the CD4+ Foxp3+ CD25(low) regulatory T-cell subpopulation in type 1 diabetes mellitus. Autoimmunity, 1–9 (2014).
    Boari, J. T. et al. IL-17RA signaling reduces inflammation and mortality during Trypanosoma cruzi infection by recruiting suppressive IL-10-producing neutrophils. PLoS Pathog 8, e1002658 (2012).
    Chung, Y. et al. Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity 30, 576–587 (2009).
    Sutton, C., Brereton, C., Keogh, B., Mills, K. H. & Lavelle, E. C. A crucial role for interleukin IL-1 in the induction of IL-17 - producing T cells that mediate autoimmune encephalomyelitis. J Exp Med 203, 1685–1691 (2006).
    Rosas-Jorquera, C. E. et al. Challenge of Chronically Infected Mice with Homologous Trypanosoma cruzi Parasites Enhances the Immune Response but Does Not Modify Cardiopathy: Implications for the Design of a Therapeutic Vaccine. Clin Vaccine Immunol 20, 248–254 (2013).
    Cosper, P. F., Harvey, P. A. & Leinwand, L. A. Interferon-γ causes cardiac myocyte atrophy via selective degradation of myosin heavy chain in a model of chronic myocarditis. Am J Pathol 181, 2038–2046 (2012).
    Savvatis, K. et al. Interleukin-23 deficiency leads to impaired wound healing and adverse prognosis after myocardial infarction. Circ Heart Fail 7, 161–171 (2014).
    Torzewski, M. et al. Chronic inflammatory cardiomyopathy of interferon γ–overexpressing transgenic mice Is mediated by tumor necrosis factor-α. Am J Pathol 180, 73–81 (2012).
    Eriksson, U. et al. Dendritic cell–induced autoimmune heart failure requires cooperation between adaptive and innate immunity. Nat Med 9, 1484–1490 (2003).
    Le Feuvre, R. A., Brough, D., Iwakura, Y., Takeda, K. & Rothwell, N. J. Priming of macrophages with lipopolysaccharide potentiates P2X7-mediated cell death via a caspase-1-dependent mechanism, independently of cytokine production. J Biol Chem 277, 3210–3218 (2002).